

2 CROSSTALK The Journal of Defense Software Engineering March 2006

Using TSP With a Multi-Disciplined Project
Management System
Incorporating the Team Software Process data into an earned value
management system that tracks the entire project enables managers to
consider how work performance by one group impacts other groups
within a project.
by Timothy A. Chick

Factors Affecting Personal Software Quality
An understanding of the factors that influence software quality may help
managers implement practices that support high-quality software.
by Dr. Mark C. Paulk

Designing in UML With the Team Software Process
This article examines how modern design techniques can be used on
a Team Software Process project to create a flexible and mobile design
tool with rigid, disciplined process.
by David R. Webb, Ilya Lipkin, and Evgeniy Samurin-Shraer

Maturing the PSP: Developing a Body of Knowledge
and Professional Certification for PSP-Trained
Software Developers
Now there is a way to delineate and document the core skills and
knowledge that set Personal Software Process (PSP) practitioners apart
from other software engineers, enabling guidelines to measure
capabilities as well as developing content for PSP-related training,
curricula, or credentials.
by Dr. Marsha Pomeroy-Huff

Understanding the Logic of System Testing
This article discusses the logic of system testing, and the steps to
construct valid proofs that testers need to form their conclusions about
the quality of a software product.
by Dr. Yuri Chernak

Availability, Reliability, and Survivability: An
Introduction and Some Contractual Implications
These authors show the relationship between cost, performance, and
service-level agreements (SLAs) levels established by the customer
when SLAs specify availability, reliability, or survivability objectives.
by Dr. Jack Murphy and Dr. Thomas Ward Morgan

4

9

14

19

22

26

****** ******

Cover Design by
Kent Bingham.

3
8

13
18
30

31

DeparDepar tmentstments

ON THE COVER

From the Sponsor

Coming Events
Web Sites

Call for Articles

Letter to the Editor

SSTC Conference Ad

BackTalk

PSPPSP//TSPTSP

SoftwarSoftwaree EngineeringEngineering TTechnoloechnologgyy

CrossTalk
76 SMXG

CO-SPONSOR

309 SMXG
CO-SPONSOR

402 SMXG
CO-SPONSOR

DHS
CO-SPONSOR

NAVAIR
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

PHONE

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Bob Zwitch

Joe Jarzombek

Jeff Schwalb

Brent Baxter

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

(801) 775-5555

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

CrossTalk,The Journal of Defense Software
Engineering is co-sponsored by the U.S. Air Force
(USAF), the U.S. Department of Homeland Security
(DHS), and the U.S. Navy (USN). USAF co-sponsors:
Oklahoma City-Air Logistics Center (ALC) 76
Software Maintenance Group (SMXG), Ogden-ALC
309 SMXG, and Warner Robins-ALC 402 SMXG.
DHS co-sponsor: National Cyber Security Division of
the Office of Infrastructure Protection. USN co-spon-
sor: Naval Air Systems Command (NAVAIR) Soft-
ware Systems Support Center.

The USAF Software Technology Support
Center (STSC) is the publisher of CrossTalk,
providing both editorial oversight and technical review
of the journal.CrossTalk’s mission is to encourage
the engineering development of software to improve
the reliability, sustainability, and responsiveness of our
warfighting capability.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 13.

309 SMXG/MXDB
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD. Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-0857 or e-mail <stsc.
webmaster@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

Additional art services
provided by Janna Jensen.
jensendesigns@aol.com

March 2006 www.stsc.hill.af.mil 3

From the Sponsor

The functional capabilities of today’s aircraft and weapon systems are increasingly
dependent on the software resident in these systems. Expanding the functionality to

meet the demands of an ever-changing environment drives a seemingly insatiable demand
for software development resources. The realities of our fiscal and personnel environ-
ments preclude a one-for-one approach to meeting those demands. Like many other orga-
nizations, the Naval Air Systems Command (NAVAIR) has embarked on a journey to
transform the way it acquires and develops software. Nothing less than a transformation

will yield the efficiencies we need to support our customers: the sailors and Marines who utilize our
products to protect and defend our nation.

The military, civilian, and contractor teams supporting NAVAIR have produced software prod-
ucts that have met user expectations for many years. Their dedication and hard work has allowed
successful deployment of very complex weapon systems. However, I would have to characterize
the efforts as more art than science. Many of our most significant releases have been based on the
heroic actions of team members. While laudable, such an approach is not sustainable in a steady-
state environment, much less in one of significantly increasing demands.

Our quest for transformation is based on some important changes. Two of them are structur-
al in nature. The other, tied closely with the structural changes, is cultural. The initial structural
change – already under way – groups our existing 52 standalone product teams into four Mission
Area Teams (MATs), each with a single leader responsible for working with many customers and
sponsors to deliver products efficiently by utilizing shared resources. This specific change is driving
the largest cultural change. Prior to this transformation, each separate product team leader carried
full resource and product responsibility. This arrangement did little to enhance efficiency across the
teams as resource sharing could lead to perceived increases in risk to the separate product teams.

The second structural change is more germane to CrossTalk. NAVAIR has decided to
embrace the Software Engineering Institute’s (SEISM) Capability Maturity Model® Integration
(CMMI®) model as overall architecture to guide process improvement within the MATs. NAVAIR
has a long history of utilizing SEI models, and has achieved significant success in process improve-
ment using the CMM® for Software (SW-CMM), but it has been a fragmented approach dependent
on the process improvement philosophy of each individual team. Within CMMI, processes are
developed at the organizational level with tailoring guides to allow individual project teams within
the organization to utilize the processes. We have established the MATs as the CMMI organiza-
tional focus, and are working to document the organizational level processes and tailoring guides
for each applicable process area. This single structural change will allow much more flexibility for
resource sharing between teams as each MAT member will utilize the same processes regardless of
his or her specific project team. This overarching process improvement culture should bring steadi-
ly increasing rigor to our software development practices, allowing us to accurately predict and exe-
cute resource requirements and project risks, precluding the need for continuous heroic efforts.

Each NAVAIR product team selected combinations of tools that met its specific needs to do
software process improvement, including SW-CMM, CMMI, Earned Value Management System,
High Performance Organization training, and Team Software ProcessSM (TSPSM). Since the theme
of this edition of CrossTalk is Personal Software ProcessSM/TSP, I would like to reference
some specific examples of how TSP has significantly helped accelerate organizational software
process improvement in NAVAIR. SEI data shows an average of six years to achieve SW-CMM
Level 4. At NAVAIR, we proudly point to three organizations at multiple locations that success-
fully used TSP to achieve SW-CMM Level 4 in less than three years: AV-8B (2003), P-3C (2004),
and E-2C (2005)!

The articles within this issue are intended to give you a flavor of the successful use of TSP to
further software process improvement efforts. I hope you enjoy learning from your colleagues’ past
efforts and future plans.

Software Product Development:
Transforming Art to Science

Terrence Clark
Director, Software Engineering
Naval Air Systems Command

Standard Team Software ProcessSM

(TSPSM) for a single project is designed
for software teams of between three and
15 software engineers. TSP does not
address other disciplines or how to inte-
grate the plans and schedules of the many
individuals needed to develop, build, or
maintain a large complex system. Because
it does not address how to integrate the
plans and schedules of a large system, it
also does not address how to manage or
track such a large project.

This is the dilemma I found myself in
a few years ago when my organization
decided to begin using TSP for its soft-
ware work. In addition to software engi-
neering, a typical project for my group
includes systems engineering, indepen-
dent verification and validation, domain
expertise, flight testing, and multiple sup-
port functions such as configuration man-
agement and quality assurance. Of all
these disciplines, only the software engi-
neering group was able or willing to use
TSP, so traditional project planning and
tracking methods were needed for the
overall project.

Why Have a Consolidated
Plan?
A consolidated plan forces the many disci-
plines’ practitioners to think through their
approach and make decisions about how
to proceed. It forces the disciplines’ prac-
titioners to think outside their proverbial
bubbles and consider how the work they
perform impacts other groups. Network-
based schedules can then be created to
identify the interdependencies of activities
and the impacts of late or early starts.

Once the schedule is developed, a crit-
ical path can be identified and what if exer-
cises can be performed. In addition,
resources – including facilities, equipment,
and personnel – can be identified and

tracked. The earned value (EV) method
for each task should be determined during
the development of the plan. The consol-
idated plan will provide a vehicle to facili-
tate executive and customer review. The
process of developing a consolidated plan
will often identify missing work in the
individual team’s plans, thereby identifying
potential problems early.

A consolidated project plan should
define how, when, by whom, and for how
much. It should adequately reflect con-
tract milestones, establish meaningful indi-

cators to measure work progress, and
allow for the identification of specific
activities and events that contribute to
schedule variances. Without addressing
the interdependencies of the many disci-
plines, you cannot adequately address
these questions.

TSP Versus Traditional Project
Planning and Tracking
TSP encapsulates many of the elements of
traditional project planning and tracking
such as work breakdown structure (WBS)
or size summary (SUMS), which is a deliv-
erable-oriented, hierarchical decomposi-
tion of the work to be executed [1]. TSP

also addresses things like tasks and
resource allocation at a much more
detailed level than most common project
plans. However, TSP does not fully encap-
sulate other concepts of traditional pro-
ject planning and tracking such as (1)
resource dictionaries, which include labor
category, rate (cost/staff hour), and
resource availability; (2) tasks with associ-
ated logic; (3) Gantt/Pert graphs; and (4)
critical path analysis. This article will only
scratch the surface of some of these con-
cepts; for more details refer to [1].

After many years of experimenting and
using different techniques for project plan-
ning and tracking, my organization has
developed the following guidelines to con-
sider when developing a consolidated plan:
• WBS – develop to two or three levels:

° Determine EV method.
§ TSP tasks use percent complete

as defined in the section “Con-
verting TSP EV Into EVMS
EV” (see page 6).

§ Non-TSP tasks use 50/50 as
the preferred method; 0/100 is
only used for tasks less than or
equal to a one-month duration
or reporting period.

§ Work activities are not to
exceed two-month durations or
two reporting period durations.

° Tasks should be discrete, resulting
in a product or measurable result.

° Resources should be assigned with
budgeted hours or expense.

• Limit level-of-effort (LOE) activities
to less than 10 percent of total effort.

Earned Value Management
EV is the budgeted value for an element
of work that has been completed, with
that value determined from what had ini-
tially been planned for accomplishing that
element of work. EV techniques have
been developed to provide multiple ways
to measure accomplishment that best fits

4 CROSSTALK The Journal of Defense Software Engineering March 2006

Using TSP With a Multi-Disciplined
Project Management System

Timothy A. Chick
Naval Air Warfare Center

The Team Software ProcessSM (TSPSM) provides an extraordinary amount of data, including project planning and tracking
data in terms of task hours and earned value, but it does not provide a mechanism for incorporating the plans of multiple
teams, which do not all use TSP. In today’s world of large and complex systems, the project must consist of multiple disci-
plines such as software engineers, system engineers, hardware engineers, domain experts, test engineers, and other support per-
sonnel. To plan and track a multi-discipline project, a consolidated plan must be created and tracked. Not all disciplines are
able or willing to use TSP, so traditional project planning and tracking methods must be used for the overall project.

PSP/TSP

SM Team Software Process and TSP are service marks of
Carnegie Mellon University.

“The process of
developing a

consolidated plan will
often identify missing
work in the individual
team’s plans, thereby
identifying potential
problems early.”

Using TSP With a Multi-Disciplined Project Management System

March 2006 www.stsc.hill.af.mil 5

the work being accomplished [2]. TSP
uses the EV technique 0/100, which
allows no credit of a given task until the
task is completed. No value is earned for
starting a task or for partially completing a
task.

This planning technique should be
limited to tasks that are planned to start
and complete within the same reporting
period. This method works well using TSP
because TSP breaks the work task down
to such granularity that a task is complet-
ed every week, which is the reporting peri-
od of a TSP team. A TSP team meets
weekly to discuss individual status and
how it impacts the team’s commitments.

I have found, however, that this
method usually does not work very well
for a large complex project, which uses
traditional project planning and tracking
because developing such a detailed plan at
the project level is usually not realistic. It is
very difficult to break tasks down to
extremely small elements and still be able
to accurately apply duration and logic
while still accounting for any interdepen-
dencies with other disciplines.

For example, many projects report EV
monthly. In this case, 0/100 would be a
good method of EV for tasks that are less
than one month in duration. If you used
0/100 for tasks that had duration longer
than the reporting period, then you would
have spikes in your EV. This makes it very
difficult to determine if the project is pro-
gressing as planned or if corrective action
is required.

Other EV methods not used by TSP
are 50/50, percent complete, and LOE.
The 50/50 technique is typically used when
the task begins in one reporting period and
completes in the next. The 50/50 tech-
nique credits 50 percent of the EV when a
task is started and 50 percent of the EV
when the task is completed. By receiving
EV for starting and completing the task,
this method allows a project to show
progress during both reporting periods.

The least desirable of the discrete EV
techniques is the percent-complete meth-
od. Percent complete allows an estimated
percent completed to be assigned for a
given reporting period. Unlike 0/100 and
50/50, this method can be extremely sub-
jective. For example, if the estimated per-
cent completed is based on opinion rather
than on an objective evaluation of the
work completed and the work remaining,
then the EV assigned to the task may be
grossly inaccurate.

Certain tasks are difficult to quantify in
terms of work accomplished; these tasks
are referred to as LOE. Because the EV
will always equal the budget, there will

never be any schedule variance. This
method should only be used for tasks in
which no tangible product is developed
such as project management, clerical sup-
port, etc. This method would be used for
many of the off-task items identified in
TSP such as meetings, phone calls, or any-
thing else not directly related to the imme-
diate activity.

In my experience, groups that are new
to EV try to use this method the most
because it is the easiest to define and track.
The problem is that it does not usually
give an accurate picture of how the pro-
ject is progressing. In fact, when LOE is
greater than 10 percent of total effort, the
EV becomes skewed to the point that it is
very difficult to determine if the project is
on schedule or on cost, and if the project
will be able to make its commitments.

Developing a Project’s EV
Management System With
TSP as an Input
Now that I have gone over why a consoli-
dated plan is needed and some of the dif-
ferences between TSP and traditional pro-
ject planning and tracking, how do you
make the leap from a TSP launch to a con-
solidated project EV management system
(EVMS)?

The TSP launch provides most of the
core data elements needed as input into a
consolidated EVMS. It provides estimates,
tasks to be performed, durations, sequen-
tial logic and milestones, and assigns
resources to tasks. The data hours found
in TSP are the task hours that resources will
actually work to complete the task identi-
fied in TSP. The EVMS system captures
staff hours, which are all of the hours the
resources work in each period. Therefore,
a conversion of the data is necessary. The
EVMS system also needs to capture inter-
dependencies in more detail than identi-
fied using TSP.

As stated previously, TSP breaks its
major tasks down into granular tasks that
can be completed within a one-week peri-
od. This can be considered too much
detail to maintain in a consolidated project
plan. So translation between a TSP task
and an EVMS activity is done by translat-
ing SUMS assembly items to activities in
EVMS. The resources are then assigned to
the EVMS activities by determining the
resources assigned to the corresponding
TSP tasks.

The task hours planned for the SUMS
assembly items must be converted into
staff hours. When we first made this con-
version, we did what any good planner
does when he or she has no historical data:

We estimated based on personal experi-
ence. We knew the average task hours per
week the TSP team used for estimation,
and we knew the average hours per week
an engineer worked, thus giving us a start-
ing ratio for task hours to staff hours.
Once we collected some historical data,
we determined that based on the type of
work being performed, the task hour to
staff hour ratio varies between 2.0 and
2.62. That is, it takes between 2.0 and 2.62
staff hours for every TSP task hour per-
formed. Knowing this, we accurately con-
verted task hours planned during a TSP
launch to staff hours for EVMS purposes.
Once the estimated staff hours were
determined, we used the resource hourly
rates to develop cost estimates.

The duration of EVMS activities can
be determined by using the start and com-
pletion date of the first and last phase
mapped to the TSP assembly. EVMS mile-
stones are updated based on any mile-
stones identified during the TSP launch,
along with milestones identified from
other project entities.

Using the task log in Table 1 (see next
page) as an example, one of the activities
in EVMS is called Widget A. Jack, John,
and Jill are assigned resources for Widget
A. According to the task log, Jack is
assigned 200 planned task hours, and John
and Jill are both assigned 44 planned task
hours. Using the TSP task hour to staff
hour ratio of 2.62, Jack would be assigned
524 (200*2.62) staff hours, and John and
Jill would be assigned 115 (44*2.62) staff
hours in EVMS for Widget A. The dura-
tion for Widget A in the EVMS would be
95 days because the planned start week
and completion date is week 5 and week
24, respectively ((24 weeks minus 5
weeks)*5 days/week = 95 days). The pre-
decessor of Widget A would be Widget B,
and the successor of Widget A would be
Widget C because of the order established
during the TSP launch.

Once the conversion of TSP launch
data to EVMS data is done, additional
analysis needs to be made of the project’s
consolidated plan before it is considered
complete. TSP off-task activities need to
be identified and budgeted in the EVMS
system. This includes TSP roles such as
planning manager, test manager, design
manager, and team lead. These tasks
should be as specific as possible so that the
correct method of EV can be assigned,
trying to avoid LOE activities as much as
possible so that project LOE does not
exceed 10 percent of the total effort.

Dependencies between the TSP team’s
activities and other disciplines should be
identified and linked in the EVMS. This

PSP/TSP

6 CROSSTALK The Journal of Defense Software Engineering March 2006

allows for the establishment of the pro-
ject’s critical path. The dependencies
should also be analyzed to determine the
impact to the other disciplines’ plans, and
to determine any resource allocations such
as facilities’ needs to be changed. Once
this additional analysis is completed, the
consolidated plan is ready to be baselined.
The baseline is the basis in which the pro-
ject’s performance is measured against
using EV.

At this point, you may be thinking it is
a lot of work to baseline a consolidated
project plan – and you would be correct.
In fact, most large projects only rebaseline
once or twice a year and only if the pro-
jects’ overall performance against the
baseline varies so much that the plan no
longer reflects reality sufficiently to man-
age the project. So how do you take into
account that TSP teams usually relaunch
every three to four months?

This method required that the TSP
team plan the entire effort up front, even
if the effort is over a year in duration.
When TSP teams relaunch, the current
plan in the EVMS is updated but not the
baseline. The only time the EVMS base-
line will be updated with a team’s relaunch
data is when the entire project undergoes
a project rebaseline.

During the period that the EVMS base-
line does not reflect the TSP team’s
relaunch, the TSP relaunch data will be used
as the basis for any EVMS action plans
developed due to a deviation outside the
project’s defined acceptable variance, usual-
ly plus or minus 10 percent cost and sched-
ule. In other words, a relaunch is simply a

mechanism for developing a detailed action
plan for correcting inaccurate plans devel-
oped during a TSP team’s initial launch.

It is important to note that even
though the overall team plan may extend
for several years, the TSP’s detailed plans
extend for only a few months [3]. Thus, it
should be expected that once the TSP
team goes beyond the first few months
following the TSP launch, the team will
begin to vary beyond the EVMS baseline
due to the fact that TSP launches and
relaunches are not designed to develop a
detailed plan beyond a three- to four-
month period.

For example, Figure 1 represents the
consolidated EV for a multi-disciplined
project that consists of four TSP teams –
system engineers, hardware engineers,
domain experts, test engineers – and other
support personnel. Figure 1 shows that
both the cost and schedule are within a 10
percent variance, thus the project is per-
forming within expected parameters.

Figure 2 is an EVMS report generated
at the TSP Team A level of the multi-dis-
ciplined WBS. It shows that TSP Team A
is behind schedule by 11 percent and over
budget by 49 percent when comparing the
team’s current status against its baseline
plan. Because this team is outside the 10
percent cost and schedule thresholds, the
team is required to develop an action plan
on how it will address these variances.
One way for the team to address these
variances is to conduct a relaunch, which
would provide very detailed plans. Both
the TSP team and project management
can then use these detailed plans to medi-

ate the impact to the overall project.
Because the project is performing well,
based on Figure 1, TSP Team A’s perfor-
mance would not justify the expense or
effort needed to rebaseline the entire
multi-discipline project. Thus, for EVMS
purposes, TSP Team A would be tracked
against its action plan.

Converting TSP EV Into
EVMS EV
TSP teams can use a modified percent-
complete method when converting TSP
EV into EVMS EV. I mentioned earlier
that percent complete could be subjec-
tive due to the lack of unbiased judg-
ment. In this case, because TSP tasks are
at a more granular level than the EVMS
activities, the TSP tasks become the
unbiased element used to determine per-
cent complete.

One way of updating the completion
of a TSP task is using the percent-com-
plete method, which is assigned to the
EVMS activity proportionally to the total
number of unique TSP tasks mapped to
the TSP assembly. For example, if five
unique tasks are mapped to Assembly A
and two of the tasks have been complet-
ed, then Activity A, in the EVMS, would
be 40 percent complete. Some TSP tools
such as Process Dashboard automatically
calculate the percent complete at a given
assembly level, in which case the number
would be the percent complete in the
EVMS for the corresponding activity.

Actual cost and actual staff hours
expended on an activity in the EVMS
should be recorded using a timecard sys-

Assembly Phase Task E
s

ti
m

a
te

d
S

iz
e

S
iz

e
M

e
a

s
u

r
e

R
a

te

(p
e

r
h

o
u

r
)

E
s

ti
m

a
te

d

H
o

u
r
s

E
n

g
in

e
e

r
s

P
la

n
H

o
u

r
s

P
la

n
W

e
e

k

Widget B PM Widget B - Post-mortem Jack 3 LOC 8.3 0.4 1.0 0.4 7/19/2004 5

Widget A PLAN Widget A - Research and Planning Jack 2,000 LOC 200.0 10.0 1.0 10.0 7/19/2004 5

Widget A DLD Widget A - Detailed Design Jack 2,000 LOC 47.6 42.0 1.0 42.0 8/23/2004 10

Widget A TD Widget A - Test Development Jack 2,000 LOC 200.0 10.0 1.0 10.0 9/6/2004 12

Widget A DLDR Widget A - DLD Review Jack 2,000 LOC 125.0 16.0 1.0 16.0 9/13/2004 13

Widget A DLDINSP Widget A - DLD Inspection Jack, John, Jill 2,000 LOC 90.9 22.0 1.0 22.0 9/27/2004 15

Widget A CODE Widget A - Code Jack 2,000 LOC 47.6 42.0 1.0 42.0 10/25/2004 19

Widget A COMPILE Widget A - Compile Jack 2,000 LOC 400.0 5.0 1.0 5.0 11/1/2004 20

Widget A CODEINSP Widget A - Code Inspection Jack, John, Jill 2,000, LOC 90.9 22.0 1.0 22.0 11/15/2004 22

Widget A UT Widget A - Unit Test Jack 2,000 LOC 125.0 16.0 1.0 16.0 11/29/2004 24

Widget A PM Widget A - Post-mortem Jack 2,000 LOC 1000.0 2.0 1.0 2.0 11/29/2004 24

Widget C PLAN Widget C - Research and Planning Jack 400 LOC 200.0 2.0 1.0 2.0 11/29/2004 24

Note: For DLDINSP and CODEINSP, the number of engineers is listed as 1.0. This is due to the replication of task that occurs using the Software Engineering Institute's TSP tool. This is only one of many

equally valid methods used to address the replication of tasks to multiple individual workbooks when multiple engineers are assigned as a resource.

Resources P
la

n
D

a
te

Widget A Widget A - Code Review Jack 2,000, LOC 153.8 13.0 1.0 13.0 11/1/2004 20CR

Table 1: TSP Task Log

Using TSP With a Multi-Disciplined Project Management System

March 2006 www.stsc.hill.af.mil 7

tem or other mechanism and not by using
the task hour to staff hour ratio. This con-
version should only be used for planning
purposes. Both TSP and non-TSP teams
need to collect these actual staff hours
expended in the same manner to maintain
consistency and validity of EVMS data.

Conclusion
TSP allows software teams to consistently
meet commitments [4]. TSP provides an
extraordinary amount of data that can be
used for project planning and tracking.
This data can be effectively incorporated
into a consolidated multi-disciplined pro-
ject plan. By incorporating the TSP data
into an EVMS that tracks the entire pro-
ject and not just the software development
effort, the project is able to consider how
work performance by one group impacts
other groups within the project.

TSP encapsulates many traditional pro-
ject planning and tracking elements such as
WBS, tasks, and resource allocation. TSP
does not fully encapsulate other concepts
of traditional project planning and track-
ing such as critical path and dependencies.

TSP uses the 0/100 method of EV.
Other EV methods not used by TSP
include 50/50, percent complete, and
LOE. It is important to select the appro-
priate method of EV to accurately mea-
sure the performance of an activity. When
selecting an EV method for a project,
duration and type of activity are the pri-
mary considerations.

Most of the information required to
develop an EVMS project plan can be
obtained from a TSP launch. In addition to
this data, you must consider TSP off-task
activities (LOE), dependencies between
the TSP team’s activities and other disci-
plines, and the project’s critical path.

For project tracking purposes, once the
TSP data has been incorporated into the
EVMS project baseline, a TSP team can
use a modified percent-complete method
when converting TSP EV into EVMS EV.
Because TSP tasks are at a more granular
level then the EVMS activities, the TSP
tasks become an unbiased element used to
determine percent complete.

Most large projects only rebaseline the
project plan once or twice a year, or when
the project’s overall performance against
the baseline varies so much that the plan
no longer reflects reality. Including the
entire software effort in the EVMS base-
line requires that the TSP team launch the
entire effort – not just the next three- to
four-month effort. For EVMS, a TSP
relaunch is used simply as a mechanism
for developing a detailed action plan for
correcting inaccurate plans developed dur-

ing a TSP team’s initial launch or during
the initial EVMS baseline.

TSP does not eliminate the need for
developing a consolidated project plan
and tracking progress against the plan,
especially in the world of very large and
complex systems that consist of personnel
from multiple disciplines such as software
engineering, system engineering, hardware
engineering, domain expertise, test engi-
neering, and other support personnel.

Acknowledgements
Many people have participated in the work
that led to this article, but I would like to
express a special thanks to Eileen Lang of
Eagan McAllister Associates, Inc. Without
her superior understanding of project
planning and analysis, the integration of
TSP into the Hawkeye: Navy Airborne
Warning and Control System Aircraft’s
(E-2C HE2K) organizational EVMS
would not have been possible.u

References
1. Project Management Institute. A

Guide to the Project Management
Body of Knowledge (PMBOK Guide)
Third Edition Excerpts. Newton
Square, PA: PMI, Oct. 2004 <www.
pmi .o rg/prod/g roups/pub l i c/
documents/info/pp_pmbokguide
thirdexcerpts.pdf>.

2. Humphreys, Gary C. Project Manage-
ment Using Earned Value. Orange,
CA: Humphreys & Associates, Inc.,
2002.

3. Humphrey, Watts S. PSP: A Self-
Improvement Process for Software
Engineers. Addison-Wesley, 2005.

4. Tuma, David, and David R. Webb.
“Personal Earned Value: Why Projects
Using the Team Software Process
Consistently Meet Schedule Commit-
ments.” CrossTalk Mar. 2005
<www.stsc.hi l l .af.mil/crosstalk/
2004/03/0503Tuma.html>.

Project Summary

$7,482,087.69

$9,076,859.19

$6,871,092.06

$7,264,892.69

$0

$500,000

$1,000,000

$1,500,000

$2,000,000

$2,500,000

$3,000,000

$3,500,000

$4,000,000

$4,500,000

$5,000,000

$5,500,000

$6,000,000

$6,500,000

$7,000,000

$7,500,000

$8,000,000

$8,500,000

$9,000,000

$9,500,000

$10,000,000

J
u
l

2
0
0

3

A
u

g
2
0
0

3

S
e
p

2
0
0

3

O
c
t

2
0
0

3

N
o
v

2
0
0

3

D
e

c
2
0
0

3

J
a
n

2
0
0
4

F
e

b
2
0
0
4

M
a

r
2
0
0
4

A
p

r
2
0
0
4

M
a

y
2
0
0
4

J
u

n
2
0
0
4

J
u
l

2
0
0
4

A
u

g
2
0
0
4

S
e
p

2
0
0
4

O
c
t

2
0
0
4

N
o
v

2
0
0
4

D
e

c
2
0
0
4

J
a
n

2
0
0

5

F
e

b
2
0
0

5

M
a

r
2
0
0

5

A
p

r
2
0
0

5

M
a

y
2
0
0

5

J
u

n
2
0
0

5

J
u
l

2
0
0

5

A
u

g
2
0
0

5

S
e
p

2
0
0

5

O
c
t

2
0
0

5

N
o
v

2
0
0

5

D
e

c
2
0
0

5

Months

D
o

ll
a

r
s

Planned Value

Earned Value

Figure 2:Project Summary EVMS Report

Note: For DLDINSP and CODEINSP, the number of engineers is listed as 1.0. This is due to the replication of task that occurs using the Software Engineering Institute's TSP tool. This is only one of many

equally valid methods used to address the replication of tasks to multiple individual workbooks when multiple engineers are assigned as a resource.

Actual Cost

Time Now

Schedule Performance Index: 0.92

Cost Performance Index: 0.95

Figure 1: Project Summary EVMS Report

TSP Team A

$444,368.07
$444,368.07

$394,752.07

$768,938.55

$0

$100,000

$200,000

$300,000

$400,000

$500,000

$600,000

$700,000

$800,000

$900,000

J
u

l
2

0
0

3

S
e

p
2

0
0

3

N
o

v
2

0
0

3

J
a

n
2

0
0

4

M
a

r
2

0
0

4

M
a

y
2

0
0

4

J
u

l
2

0
0

4

S
e

p
2

0
0

4

N
o

v
2

0
0

4

J
a

n
2

0
0

5

M
a

r
2

0
0

5

M
a

y
2

0
0

5

J
u

l
2

0
0

5

S
e

p
2

0
0

5

N
o

v
2

0
0

5

Months

D
o

ll
a

rs

Planned Value

Earned Value

Actual Cost

Time Now

Figure 3:TSP Team A EVMS Report

TSP Team A

Months

D
o

ll
a

r
s

Schedule Performance Index: 0.89

Cost Performance Index: 0.51

Figure 2: TSP Team A EVMS Report

PSP/TSP

8 CROSSTALK The Journal of Defense Software Engineering March 2006

COMING EVENTS

April 2-6
9th Communications and Networking

Simulation Symposium
Huntsville, AL

www.scs.org/confernc/springsim/
springsim06/cfp/cns06.htm

April 3-7
The 3rd International Conference on

Software Process Improvement
Orlando, FL

www.icspi.com

April 10-12
3rd International Conference on

Information Technology: New Generations
Las Vegas, NV
www.itng.info

April 19-21
Information Processing in Sensor

Networks (IPSN 2006)
Nashville, TN

www.cs.virginia.edu/~ipsn06

April 19-21
19th Conference on Software Engineering
Education and Training (CSEE&T 2006)

Oahu, HI
http://db-itm.cba.hawaii.edu/

cseet2006/index.htm

April 24-28
2nd NASA/IEEE Systems and
Software Week (SASW 2006)

Columbia, MD
www.systemsandsoftware

week.org

May 1-4
2006 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

May 7-11
Computer Audit, Control, and Security

Conference (CACS 2006)
Orlando, FL

www.isaca.org

WEB SITES

Software Engineering
Institute
www.sei.cmu.edu
The Software Engineering Institute
(SEISM) is a federally funded research and
development center sponsored by the
Department of Defense to provide lead-
ership in advancing the state of the prac-
tice of software engineering to improve
the quality of systems that depend on
software. SEI helps organizations and
individuals improve their software engi-
neering management practices.

Project Management
Institute
www.pmi.org
Established in 1969, the Project
Management Institute (PMI) is a not-
for-profit, project-management profes-
sional association with more than
100,000 members in 125 countries.
PMI members are in many different
industry areas, including aerospace,
automotive, business management, con-
struction, engineering, financial services,
information technology, pharmaceuti-
cals, and telecommunications. PMI pub-
lishes “A Guide to the Project
Management Body of Knowledge,” and
its Project Management Professional
certification is the world’s most recog-
nized professional credential for individ-
uals associated with project manage-
ment. In 1999, PMI became the first
organization in the world to have its cer-
tification program attain International
Organization for Standardization 9001
recognition.

Software Program
Managers Network
www.spmn.com
The Software Program Managers
Network (SPMN) is sponsored by the
deputy under secretary of defense for
Science and Technology, Software
Intensive Systems Directorate. It seeks
out proven industry and government
software best practices and conveys them
to managers of large-scale Department
of Defense software-intensive acquisi-
tion programs. The SPMN provides
consulting, on-site program assessments,
project risk assessments, software tools,
guidebooks, and specialized hands-on
training.

INCOSE
www.incose.org
The International Council on Systems
Engineering (INCOSE) was formed to
develop, nurture, and enhance the
interdisciplinary approach to enable the
realization of successful systems.
INCOSE works with industry, acade-
mia, and government in these ways:
provides a focal point for disseminating
systems engineering knowledge, pro-
motes collaboration in systems engi-
neering education and research, assures
the establishment of professional stan-
dards for integrity in the practice of sys-
tems engineering, and encourages gov-
ernmental and industrial support for
research and educational programs to
improve the systems engineering
process and its practices.

Timothy A. Chick is the
software manager for the
Hawkeye: Navy Airborne
Warning and Control
System Aircraft (E-2C
HE2K) Software Support

Activity for the Naval Air Warfare Center
(NAVAIR), a division of the Department
of the Navy at Patuxent River, Md. He is
also the Software Engineering Process
Group lead and a certified Personal
Software ProcessSM instructor and trained
Team Software ProcessSM coach. Chick
has been with the E-2C program for
more than six years. He has held several

positions, including project team lead and
software engineer. He has a Bachelor of
Science in computer engineering from
Clemson University and a Master of
Science in computer science from Johns
Hopkins University.

Naval Air Warfare Center –
Aircraft Division
BLDG 2185 STE 1190-B2 4.1.4
22347 Cedar Point RD UNIT 6
Patuxent River, MD 20670
Phone: (301) 342-0489
Fax: (301) 757-3219
E-mail: timothy.chick@navy.mil

About the Author

March 2006 www.stsc.hill.af.mil 9

Factors Affecting Personal Software Quality

Understanding the factors that influence software quality is crucial to the continuing maturation of the software industry. An
improved understanding of software quality drivers will help software engineers and managers make more informed decisions
in controlling and improving the software process. Data from the Personal Software ProcessSM provides insight into interper-
sonal differences between competent professionals as increasingly disciplined processes are adopted. Program size, (empirically
measured) programmer ability, and disciplined processes significantly affect software quality. Factors frequently used as sur-
rogates for programmer ability, e.g., years of experience, and technology, e.g., programming language, do not significantly
impact software quality, although they may affect other important software attributes such as productivity. An understanding
of these factors may help managers implement practices that support high-quality software.

Dr. Mark C. Paulk
Carnegie Mellon University

The research reported in this article was
part of a larger investigation into the

relationship between process discipline and
software quality [1]. It focuses on the prod-
uct, technology, and programmer ability
factors that may affect software quality in
addition to the process factors. My research
confirms that a disciplined process affects
software quality. It also confirms that pro-
grammer ability affects software quality
and, more importantly, shows that even top
performers can improve their performance
by a factor of about 2X by following disci-
plined processes. Commonly used surro-
gates for ability such as seniority and acad-
emic credentials are, however, likely to be
ineffective measures.

The research uses data from the
Personal Software ProcessSM (PSPSM), which
applies process discipline to the work of the
individual software professional in a class-
room setting. PSP is taught as a one-semes-
ter university course at several universities
or as a multi-week industry training course.
It typically involves 10 programming assign-
ments, using increasingly sophisticated
processes [2]. The life-cycle processes for
PSP are planning, designing, coding, com-
piling, testing, and a post-mortem activity
for learning. The primary development
processes are designing and coding, since
there is no requirements analysis step.

When discussing quality in the software
industry, defects are the common indicator,
although software quality characteristics
include functionality, reliability, usability,
efficiency, maintainability, and portability.
Although other aspects of quality are
important, software quality is measured as
defect density in testing in the analyses
described in this article.

Potential explanatory variables identi-
fied in prior research can be divided into
categories related to the product and

application domain, the technologies used,
the software engineering processes fol-
lowed, and the ability of the individuals
doing the work. Quality issues related to
the customer requirements are outside the
scope of this research. Although require-
ments volatility is a significant quality con-
cern in software projects, requirements
volatility is not an issue for PSP.

Many explanatory factors for software
quality from models such as COQUAL-
MO [3] are out of scope for this research

because they address project and team
issues that are not relevant to the PSP
environment. This highlights the chal-
lenges in generalizing PSP results to soft-
ware work in general, but factors impor-
tant for individual performance should
also be important for teams, projects, and
organizations.

There are four PSP major processes –
PSP0 to PSP3 – with minor variants for the
first three (PSP3 can also be considered a
minor extension of PSP2). Each level
builds on the prior level by adding a few

engineering or management activities. This
minimizes the impact of process change
on the engineer, who needs only to adapt
the new techniques into an existing base-
line of practices. Design and code reviews
are introduced in assignment No. 7. Design
and code reviews are personal reviews con-
ducted by an engineer on his or her own
design or code. They are intended to help
engineers achieve 100 percent yield: All
defects are removed before compiling the
program. Design templates are introduced
in assignment No. 9. The design templates
are for functional specifications, state spec-
ifications, logic specifications, and opera-
tional scenarios.

PSP students are asked to measure and
record three basic types of data: time
(effort), defects, and size (lines of code
[LOC]). All other PSP measures are
derived from these three basic measures.

Data analyzed in this research included
the data used in the Hayes and Over study
[4], as well as additional data collected
through 2001. These rich data sets allow
sophisticated statistical analyses ranging
from simple regression models to multiple
regression models to mixed models that
incorporate random effects and repeated
measures. The conclusions reported are
based on consistent results for multiple
data sets. The data sets are usually split by
assignment 9A or 10A (to remove potential
differences in problem complexity and
ensure a relatively mature process) and by
programming language (to remove tech-
nology differences), both including and
excluding outliers. A data set could there-
fore be described as (9A, C, No Outliers).
In some cases, e.g., when investigating the
impact of programming language used,
different data splits are used as appropriate.

Confirming PSP Quality
Trends
Process maturity is a generic concept that

SM Personal Software Process and PSP are service marks of
Carnegie Mellon University.

“My research confirms
... that programmer

ability affects software
quality and, more

importantly, shows that
even top performers can

improve their
performance by a factor
of about 2X by following
disciplined processes.”

PSP/TSP

10 CROSSTALK The Journal of Defense Software Engineering March 2006

can be considered low for PSP0 and high
for PSP3. It is interesting to note that in
COQUALMO, process maturity has the
highest impact of all factors on defect
injection. As can be observed in Figure 1,
which shows the differences in defect den-
sity in testing for each PSP major process, the
software quality trend across the PSP’s
major processes is apparent, confirming
prior analyses.

The comparison circles in the right
part of Figure 1 indicate that the means
for each of the PSP major processes are sig-
nificantly different. The Each Pair,
Student’s t, and the All Pairs, Tukey-Kramer
honest significant difference are separate tests
of the hypothesis that the defect density in
testing for the PSP major processes is signifi-
cantly different. When there is no overlap
of the comparison circles, as in this case,
there is a significant difference, and we
can conclude that the defect density in testing
for PSP0 > PSP1 > PSP2 > PSP3. The
differences between the PSP major
processes are both statistically and practi-
cally significant. Differences greater than
4X show a decrease in defect density in test-
ing of more than 75 percent over the
course of PSP. This is a quality improve-
ment that would be of interest and value
to most software professionals.

These data include some outliers.
Excluding outliers without causal analy-
sis, as well as including them when they
are atypical, can skew results. The analy-
ses reported in this article are performed
both with and without outliers, using
inter-quartile limits (limits set at 1.5 times
the inter-quartile range beyond the 25
percent and 75 percent quartiles) to iden-
tify outliers.

Program Size
Problem complexity would not appear to be
a significant factor in PSP, given the rela-

tive simplicity of the assignments; pro-
grams smaller than 10,000 LOC are usu-
ally considered simple programs. Solution
complexity is measured by new and
changed LOC. A student’s preferred style
in optimizing memory space, speed, reli-
ability (e.g., exception handlers), generali-
ty, reuse, etc., can lead to radically differ-
ent solution complexities. Since PSP does
not impose performance requirements,
students have significant latitude in how
they solve the problems – latitude that is
available in many industry contexts as
well. Using defect density as a quality
measure should normalize these differ-
ences in solution complexity.

Since defect prediction models typi-
cally use program size as a predictor vari-
able (and many use it as the only predic-
tor variable), this variable is expected to
be significant. Program size was shown to
be a statistically significant effect on defect
density in testing in all of the four data sets
analyzed including outliers, but in only
two of the four data sets excluding out-
liers. The preponderance of the evidence
indicates that program size is related to
software quality, although more weakly
for PSP than for many prior defect pre-
diction models. These somewhat atypical
results highlight the impact of individual
differences on software quality, although
individual differences may be smoothed
out by team performance on a project.

Programmer Ability
Programmer/analyst capability is difficult to
objectively determine, but the PSP data
provide a direct and objective measure of
programmer ability. This is illustrated in
Figure 2, where defect density in testing was
averaged for the first three assignments
and used to identify the top, middle two,
and bottom quartiles for student perfor-
mance. Note that using defect density as

the measure for ability means that
decreasing value of the measure corre-
sponds to increasing ability, which means
that the top quartile of programmers is at
the bottom of the graph. Programmer abil-
ity, as measured by this variable, was
shown to be statistically significant for
every data set, including and excluding
outliers.

The students who were the top-quar-
tile performers on the first three assign-
ments tended to remain top performers
(with the smallest defect density in testing) in
the later assignments, the middle per-
formers tended to remain in the middle,
and the bottom-quartile performers (with
the largest defect density in testing) tended to
remain at the bottom. (A spike in the data
for assignment No. 3 is consistently
observed for all measures, suggesting that
assignment No. 3 is somewhat more
complex than the norm for the PSP
assignments.)

While top-quartile students per-
formed better than those in the bottom
quartile on average, a disciplined process
leads to significantly better performance
for the bottom-quartile students, and
even the top-quartile students improved
markedly. Throughout the PSP course,
top-quartile students improved their soft-
ware quality by a factor of more than
two, and bottom-quartile students
improved theirs by a factor of more than
four. Variation in performance within
each quartile also decreased markedly.

Potentially Confounding
Variables
A number of variables could affect the
analyses if not appropriately addressed.
Potential confounding variables include
those associated with instructor differ-
ences; surrogates for ability such as cre-
dentials, experience, recent experience,
and breadth of experience; and technolo-
gy factors such as the programming lan-
guage used.

PSP Classes
There are two situations that could cause
systemic differences across PSP classes:
(1) changes in the teaching materials used
in the PSP class, or (2) differences
between instructors. The possibility of a
trend due to systemic changes in the stu-
dent population does not appear likely
since there are no known reasons for a
systemic change in the student popula-
tion for PSP, although sporadic cases of
exceptionally poorly prepared or well-
prepared classes could occur. The PSP
class has been based on the text “A

0

50

100

150

200

0 1 2 3

PSP Major Process

Figure 1:Trends in Software Quality

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Assignment

D
e

fe
c

t
D

e
n

s
it

y
in

T
e

s
ti

n
g

Top Quartile

Middle Quartiles

Bottom Quartile

Figure 2:Trends for Programmer Quartiles

Each Pair

Student's t

0.05

All Pairs

Tukey-Kramer

0.05

D
e

fe
c

t
D

e
n

s
it

y
in

T
e

s
ti

n
g

(d
e

fe
c

ts
/

th
o

u
s

a
n

d
s

o
u

r
c

e
li

n
e

s
o

f
c

o
d

e
)

Figure 1: Trends in Software Quality

Factors Affecting Personal Software Quality

March 2006 www.stsc.hill.af.mil 11

Discipline for Software Engineering”
since its publication in 1995; prior classes
used drafts of the manuscript. All PSP
instructors are qualified and authorized
by the Software Engineering Institute,
and instruction is typically done by teams
of instructors. There would not appear to
be any reason for changes in PSP class
performance over time although there
might be cases where particular classes
might have significantly different results
because of special causes of variation.

Combining a small number of finish-
ing students with one or two students
struggling to finish assignment No. 9
and/or No. 10 leads to the occasional
atypical class, which is not unexpected
given the large number of classes being
analyzed. There does not appear to be a
statistically or practically significant trend
over time, and it seems reasonable to
conclude that, in general, PSP classes are
relatively stable learning environments,
although some students may have trouble
on some assignments.

Finishing the Course (Or Not)
If there is a difference in performance on
the early assignments between the people
finishing the course and those who do
not, the student population may be dif-
ferent from the general programming
population. Finishing the course was
shown to have a statistically significant
effect on defect density in testing in only one
of the four data sets analyzed, including
outliers, and in none of the data sets
excluding outliers. This suggests that
people finishing the PSP course are rea-
sonably typical of programmers who
choose to take the PSP course. This does
not, however, necessarily indicate that
PSP students are representative of the
population of software professionals in
general.

Highest Degree Attained
As illustrated in Figure 3, the highest degree
attained (doctorate [Ph.D.], Master of
Science [MS], Bachelor of Science [BS],
or Bachelor of Engineering [BE]) was
not shown to be a statistically significant
effect on defect density in testing for any of
the data sets analyzed, excluding or
including outliers. The overlap in both
sets of comparison circles graphically
show that defect density in testing for stu-
dents with a doctorate overlaps that of
students with a bachelor’s or master’s
degree.

This result indicates nothing about
whether people who pursue additional
academic credentials will improve their
ability; it simply indicates that they are

not useful distinguishers between stu-
dents in PSP. Although degree credentials
are not a significant factor for PSP
assignments, educational credentials may
contribute to improved performance for
more complex programs where deeper,
more extensive domain or engineering
knowledge may be crucial to understand-
ing both the problem and potential solu-
tions.

Years of Experience
Although some researchers have empiri-
cally found that years of experience are relat-
ed to quality, it was not shown to have a
statistically significant effect on defect den-
sity in testing for any of the data sets ana-
lyzed, excluding or including outliers.
When the studies finding that experience
was a significant factor were performed
in the 1970s and 1980s, entry-level pro-
grammers were relatively unfamiliar with
computers. The familiarity of the general

population with computers has grown
markedly over the last few decades.
Students and entry-level programmers in
the 1990s were likely to be well acquaint-
ed with computers before beginning their
professional careers. The consequence is
that the operational definition of years of
experience for programmers is likely to
have shifted in the last three decades. The
results of the earlier studies may have
been valid and yet be irrelevant to today’s
population of programmers.

This does not imply that experience
does not affect ability. Holmes found that
for his PSP data, collected over a seven-
year period, developer experience was a
significant factor [5]. His results, howev-
er, apply to a single individual engaged in
applying PSP as part of a systematic
improvement program. They indicate
that individual professionals can substan-
tially improve their performance over
time, but they cannot be generalized

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Assignment

D
e

fe
c

t
D

e
n

s
it

y
in

T
e

s
ti

n
g

Top Quartile

Middle Quartiles

Bottom Quartile

Figure 2:Trends for Programmer QuartilesFigure 2: Trends for Programmer Quartiles

0

10

20

30

40

50

60

BE BS MS Ph.D.

Highest Degree

Each Pair

Student's t

0.05

All Pairs

Tukey-Kramer

0.05

Ph.D.

D
e

fe
c

t
D

e
n

s
it

y
in

T
e

s
ti

n
g

(d
e

fe
c

ts
/

th
o

u
s

a
n

d
s

o
u

r
c

e
li
n

e
s

o
f

c
o

d
e

)

Figure 3: Differences for Highest Degree Attained

PSP/TSP

12 CROSSTALK The Journal of Defense Software Engineering March 2006

across different individuals, which is the
point of this analysis.

Industry studies of the effect of years
of experience on quality typically use the
average number of years for the team [6].
In averaging experience across the team,
related factors in assigning professionals
to the team with diverse backgrounds
may impact the operational meaning of
experience. The relevant factors may be
related to a diverse team with a variety of
skills and capabilities – years of experience
may be confounded with other factors
related to the skills of the team.

Number of Languages Known
The number of languages known may suggest
the diversity of experience of the program-
mer, which in turn may indicate ability.
While length of experience is usually con-
sidered a poor surrogate for ability, breadth
of experience is considered a more realistic
indicator [7], particularly for programmers
with less than three years of experience [8].
The number of languages that a program-
mer has a working knowledge of may be
considered a reasonable surrogate for
breadth of experience. The number of lan-
guages known was shown to have a statistical-
ly significant effect on defect density in test-
ing in only one of the four data sets ana-
lyzed, including outliers, and in none of the
data sets excluding outliers.

Percent of Time Programming in the
Previous Year
Recent experience in programming is pri-
marily a concern for learning curve
effects associated with programming
skills in general. Given the small size of
the PSP assignments, it seems likely that
the bulk of any learning curve effects
associated with basic programming skills
are concentrated in the first few assign-
ments. Percent of time programming in the pre-
vious year was not shown to have a statisti-
cally significant effect on defect density in

testing for any of the data sets analyzed,
excluding or including outliers.

Programming Language
Although some researchers have noted
that the programming language used does
not appear to be significantly correlated
with productivity or quality except at a
gross level [9], others have found that
programming language can have a signif-
icant impact on both. For example, in
defining the backfiring technique for esti-
mating function points based on LOC,
Jones found noticeable differences
between different languages: It takes 128
LOC in C to implement one function
point, but only 53 in C++ [10]. As illus-
trated by the overlap in the comparison
circles in Figure 4, the programming lan-
guage used was not shown to have a statis-
tically significant effect on defect density in
testing for any of the data sets analyzed,
excluding or including outliers.

Although language may not signifi-
cantly affect defect density, the productiv-
ity difference between languages implies
that the number of defects will vary sig-
nificantly depending on the language(s)
used. In other words, if it takes twice as
many LOC to implement a program in
language A as in language B, then there
will be twice as many opportunities for
defects in the language A program as for
the language B program, even if the defect
density is the same. Because of the impact
of programming language on productivity,
and the related effects on process vari-
ables such as review rates, the programming
language used should not be ignored in ana-
lyzing software quality, although it may
not be a statistically significant variable for
quality (as measured by defect density in test-
ing) when considered in isolation.

Conclusion
This research found that (1) process dis-
cipline is an important factor for software

quality; (2) program size, which is an indi-
cator of solution complexity, is an impor-
tant quality factor; and (3) programmer abil-
ity is an important quality factor when
empirically measured. Other variables
that may appear to be plausible surro-
gates for important areas such as ability
and technology were not shown to be sig-
nificant.

The issue of relative ability of pro-
grammers is particularly important, since
the finding that even top-quartile per-
formers improve more than 2X refutes
those who resist the need for discipline,
while acknowledging that their perfor-
mance is superior and their opportunities
for improvement are less than many of
their colleagues.

This research supports the premise of
PSP and similar process improvement
strategies: Disciplined software processes
result in superior performance compared
to ad hoc processes. This improvement
can be seen in both improved perfor-
mance and decreased variation. It can be
inferred that this is the minimum level of
improvement that can be expected for a
set of programmers since continual
improvement can be expected after the
PSP class.

The practical implications of this
research for software managers and pro-
fessionals are relatively simple, although
they may be challenging to address. First,
although programmer ability is a crucial fac-
tor affecting software quality, surrogates
such as seniority and academic creden-
tials are inadequate for ranking program-
mers, and empirical measures that are
more effective may cause dysfunctional
behavior if used for determining raises
and promotions [11]. Second, consistent
performance of recommended engineer-
ing practices improves software quality,
even for top performers, who may resist
discipline and measurement-based deci-
sions because of their superior perfor-
mance.u

References
1. Paulk, M.C. “An Empirical Study of

Process Discipline and Software
Quality.” Ph.D. diss., University of
Pittsburgh, 2005 <http://etd.library.
pitt .edu/ETD/available/etd-070
82004-155917>.

2. Humphrey, W.S. A Discipline for
Software Engineering. Reading, MA:
Addison-Wesley, 1995.

3. Boehm, B., C. Abts, A.W. Brown, S.
Chulani, B.K. Clark, E. Horowitz, R.
Madachy, D. Reifer, and B. Steece.
Software Cost Estimation With
COCOMO II. Upper Saddle River,

0

50

100

C C++ Java VisualBasic

Programming Language

Each Pair

Student's t

0.05

All Pairs

Tukey-Kramer

0.05

D
e

fe
c

t
D

e
n

s
it

y
in

T
e
s
ti

n
g

(d
e

fe
c

ts
/

th
o

u
s

a
n

d
s

o
u

r
c

e
li

n
e
s

o
f

c
o

d
e

)

Figure 4: Differences Between Programming Language Used

Factors Affecting Personal Software Quality

March 2006 www.stsc.hill.af.mil 13

NJ: Prentice Hall, 2000.
4. Hayes, W. and J.W. Over. “The

Personal Software Process (PSP): An
Empirical Study of the Impact of PSP
on Individual Engineers.” Pittsburgh,
PA: Software Engineering Institute,
1997.

5. Holmes, J.S. “Optimizing the Software
Life Cycle.” ASQ Software Quality
Professional 5.4 (Sept. 2003): 14-23.

6. Zhang, X. “Software Reliability and
Cost Models with Environmental
Factors.” Ph.D. diss., Rutgers, 1999.

7. Curtis, B. “The Impact of Individual
Differences in Programmers.” Work-
ing With Computers: Theory Versus
Outcome. Ed. G.C. van der Veer.
London: Academic Press, 1988: 279-
294.

8. Sheppard, S.B., B. Curtis, P. Milliman,
and T. Love. “Modern Coding
Practices and Programmer Perfor-
mance.” IEEE Computer 12.12 (Dec.
1979): 41-49.

9. DeMarco, T., and T. Lister. Peopleware.
2nd ed. New York: Dorset House,
1999.

10. Jones, C. “Backfiring or Converting
Lines of Code Metrics Into Function
Points.” Burlington, MA: Software
Productivity Research, Oct. 1995.

11. Austin, R.D. Measuring and Managing
Performance in Organizations. New
York: Dorset House Publishing, 1996.

About the Author

Mark C. Paulk, Ph.D.,
is a senior systems scientist
at the Information Tech-
nology Services Qualif-
ication Center at Car-
negie Mellon University.

From 1987 to 2002, Paulk was with the
Software Engineering Institute at
Carnegie Mellon, where he led the work
on the Capability Maturity Model® for
Software. Prior to joining Carnegie
Mellon, he was a senior systems analyst
for System Development Corporation at
the Ballistic Missile Defense Advanced
Research Center in Huntsville, Ala. He is
a Senior Member of the Institute of
Electrical and Electronics Engineers and a
Senior Member of the American Society
for Quality. Paulk has a Bachelor of
Science in mathematics and computer sci-
ence from the University of Alabama in
Huntsville, a Master of Science in com-
puter science from Vanderbilt University,
and a doctorate in industrial engineering
from the University of Pittsburgh.

IT Services Qualification Center
Carnegie Mellon University
Pittsburgh, PA 15213
Phone: (412) 268-5176
E-mail: mcp@cs.cmu.edu

Get Your Free Subscription

Fill out and send us this form.

309 SMXG/MXDB

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
NOV2004 c SOFTWARE TOOLBOX

DEC2004 c REUSE

JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG. MGT. AND TEST

AUG2005 c SYS: FIELDG. CAPABILITIES

SEPT2005 c TOP 5 PROJECTS

OCT2005 c SOFTWARE SECURITY

NOV2005 c DESIGN

DEC2005 c TOTAL CREATION OF SW
JAN2006 c COMMUNICATION

FEB2006 c NEW TWIST ON TECHNOLOGY

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

CALL FOR ARTICLES
If your experience or research has pr
to others, CrossTalk can get the w
articles on software-related topics t
Below is the submittal schedule for th

Do You Know How to Merge
Hardware and Software?

CrossTalk is looking for an introductory
article that discusses merging
hardware and software. Since most of
CrossTalk’s articles come from our
readers, we know this is our best way
to reach you with this request. Call
CrossTalk Associate Publisher
Beth Starrett at (801) 775-4158 or e-mail
<beth.starrett@hill.af.mil> to discuss
your experience in merging hardware
and software, and how to transform your knowledge into an article that can get
your ideas out to more than 100,000 CrossTalk readers.

Also, take a look at CrossTalk’s new Theme Calendar format at
<www.stsc.hill.af.mil/crosstalk/theme.html>.We now provide a link to each
monthly theme, giving greater detail on the types of articles we’re looking for.

14 CROSSTALK The Journal of Defense Software Engineering March 2006

Designing in UML With the
Team Software Process

The Team Software ProcessSM (TSPSM) is a good project management tool that enforces a disciplined approach to software
engineering, drastically improving cost and schedule performance and the production of quality products. One of the ways TSP
improves product quality is through emphasis on design. A heavy design emphasis is also the hallmark of the newer pro-
gramming environments. This article examines how modern design techniques can be used on a TSP project.

David R. Webb, Ilya Lipkin, and Evgeniy Samurin-Shraer
309 Software Maintenance Group

In late 2004, the 309 Software
Maintenance Group (309 SMXG) at

Hill Air Force Base took on a series of
new projects. One of these projects
focused on updating software in an
embedded weapon system, a task that
309 SMXG was proficient in perform-
ing; however, this new system had been
developed using a modern Unified
Modeling Language (UML) auto code
generation toolset, with which the group
had no prior experience. Assessed as a
Capability Maturity Model® (CMM®)
Level 5 organization in 1998, and focus-
ing on a CMM IntegrationSM (CMMI®)
assessment in 2006, the 309 SMXG was
confident in its ability to deliver software
on time and within budget for tradition-
al projects, but determined that this
newer system required a different
approach.

With this in mind, 309 SMXG
brought in an entirely new team of UML
developers to work on the maintenance
of the new weapon system. The obvious
drawback to this approach was that this
new team had little or no experience
using the disciplined software engineer-
ing techniques required by the CMM and
CMMI. Internal group policies, which
the team was required to follow,
demanded the project to tailor processes
from the organizational standard and to
follow the CMMI’s specific practices for
everything from project planning to
quantitative project management. How-
ever, due to the inexperience of the
team members, the project was strug-
gling to come up to speed on these prac-
tices on a very short schedule.

Having had success in the past using
the Software Engineering Institute’s
(SEISM’s) Team Software ProcessSM

(TSPSM) [1] to bolster the group’s own
internal processes for newer teams, the

309 SMXG decided to use this approach
on the new project. The resulting mar-
riage between UML and TSP created a
flexible and mobile design tool with a
rigid and disciplined process.

TSP and CMMI
Simply put, TSP is CMM/CMMI Level
5 at a project level. It is supported by
team members who perform Level 5
practices at a personal level using SEI’s
Personal Software ProcessSM (PSPSM). A
recent report by the SEI indicates that
adopting the TSP will satisfy most of

the specific practices of the CMMI
process areas [2]. To quickly bring the
team up to speed on the CMMI, the 309
SMXG put the entire software team
through PSP training, which required
about six weeks. They also trained the
team in using a PSP tracking tool called
the Process Dashboard that automates
many of the personal planning and
tracking activities required by the PSP.

At the conclusion of this training, a
certified SEI TSP launch coach took the
team through a one-week TSP launch
session. These sessions are used to
determine stakeholder goals, establish

team roles and processes, and produce
detailed earned value, quality, and risk
management plans. Since these are all
key elements of the CMMI, the launch
sessions are vital to the disciplined soft-
ware engineering practices required by
the model.

It was during this launch that the
team encountered its first issues with the
project’s UML environment. To create
the detailed earned value plans required
by the TSP, each of the team’s major
tasks required some type of size criteria
of task development for estimating pur-
poses. In other words, the team needed a
way of determining which tasks were
larger than others and calculating how
much effort those tasks would require.
In a traditional software environment,
the team would have estimated using
source lines of code (SLOC) and con-
verted from SLOC to effort using a
team productivity rate. There were two
problems with this traditional approach:
(1) since the team was new, there was a
lack of historical data upon which to
base productivity estimates, and (2) the
auto-generated code features of the
UML environment made traditional size
estimation very problematic. Since each
of the team members had measured
their effort and lines of code in the PSP
class, the issue of productivity could
have been addressed by using classroom
averages of SLOC/hour; however, the
problem of size estimation proved much
more difficult.

UML Design With TSP
UML is a language developed by Grady
Booch, James Rumbaugh, and Ivar
Jacobson that uses object-oriented con-
cepts and methodologies to model soft-
ware systems [3]. Simply stated, UML
consists of a set of diagrams that allow
designers to examine a software pro-
gram from several different points of
® Capability Maturity Model, CMM, and CMMI are regis-

tered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

SM CMM Integration and SEI are service marks of Carnegie
Mellon University.

Object Specification Internal External

Static Logical Specification Template Functional Specification Template

Dynamic State Specification Template Operational Scenario Template

Table 1. PSP Design Template Structure (SEI).

Table 1: PSP Design Template Structure (SEI)

“The resulting
marriage between

UML and TSP created
a flexible and

mobile design tool
with a rigid and

disciplined process.”

Designing in UML With the Team Software Process

March 2006 www.stsc.hill.af.mil 15

view prior to creating the code [4]. The
standard set of UML diagrams is the fol-
lowing:
• Use Cases.
• Class Diagrams.
• Object Diagrams.
• Sequence Diagrams.
• Collaboration Diagrams.
• State-Chart Diagrams.
• Activity Diagrams.
• Component Diagrams.
• Deployment Diagrams.
Combined views of these diagrams cre-
ate a complete description of the soft-
ware design.

As it turns out, the UML view of
design does not differ significantly from
the basic design techniques taught dur-
ing the PSP course. In fact, the PSP
design templates and design scripts pro-
vide a clear and concise description of
steps needed to produce an effective
design in UML. The PSP design-first
technique uses four orthogonal views of
any software design: internal static
(module or part construction such as the
logical layout of a module), internal
dynamic (characteristic based upon
changing values within the module),
external static (the relationship of a
module or part to other parts in the
product), and external dynamic (the
interactions this part or module has with
other parts in the product). Each design
view has a template to capture the infor-
mation (see Table 1). The following is an
example of how to use them [5].

Let us assume we want to develop
software for a standard traffic light. The
traffic light has three possible condi-
tions: red (stop), yellow (caution), and
green (go). The Operational Scenario
Template (external/dynamic view) is
used to capture the fact that the light
consistently changes from green to yel-
low to red based solely upon a timed
sequence. The State Specification
Template (internal/dynamic view) cap-
tures the fact that there is a defined set
of states through which the traffic light
moves: green, to yellow, to red, and back
to green again. It is not possible to go
from green to red or yellow to green (see
Table 2).

Now that requirements for the traffic
light have been presented, it is time to
capture them in the design. To perform
this task, it is best to use a set of tem-
plates on the requirements; several tem-
plates will be used.
1. Operational Scenario Template

(dynamic/external) is the system
requirements, which are treated as
use cases for the traffic light.

2. Functional Specification Template
(static/external) is used to describe
the traffic light timer functionality
and how it is used.

3. State Specification Template (dy-
namic/internal) is used to capture
the flow of events between states
that are now colors of the traffic
light (see Table 2).

4. Logic Specification Template (static/
internal) can then be used to capture
steps in pseudo code for the user-
entered, action-code portion of
UML. This template makes even the
traditional process of coding almost
trivial. For this example, there is no
pseudo code needed as it is done
entirely in UML events.
When all of these templates are com-

pleted, it becomes obvious how the logic
must be constructed for the software to
run the traffic light system design. It is
now a simple task to draw the design in
UML. The UML design then can auto-
generate code at this stage (Figure 1).

Final UML designs produced, as
shown in Table 3, fit into the same four
quadrants as the PSP design templates.
In Figure 1, the design description of
the traffic light is captured using UML
techniques. The PSP template used to
implement this design description is the
State Specification template, which is
equivalent to the UML State-Chart
Diagram.

The only other diagram created and
required to complete this design is from

Table 1. PSP Design Template Structure (SEI).

State #, Name Description Attributes

Initial System not running Timer event set to 30 seconds

Green On timer time out event go

to(goYellow) Yellow

Timer event set to 45 seconds

Yellow On timer time out event go

to(goRed) Red

Timer event set to 10 seconds

Red On timer time out event go

to(goGreen) Green

Timer event set to 30 seconds

Table 2: Example of the State Specification Template (SEI)

Table 3: PSP Design Structure for UML (SEI)

Object Specification

Static

Internal External

Class Diagrams Component Diagrams

Deployment Diagrams

Object Diagrams

Dynamic Activity Diagrams

State-Chart Diagrams

Use Cases

Sequence Diagrams

Collaboration Diagrams

RED

YELLOW

GREEN

goRed

goYellow

goGreen

Initial

Table 2: Example of the State Specification Template (SEI)

Figure 1: Example of the Working UML
Design Solution for Traffic Light State-Chart
Diagram

Object Specification Internal External

Static Logical Specification Template Functional Specifi

Dynamic State Specification Template Operational Scena

Table 1. PSP Design Template Structure (SEI).

State #, Name Description Attributes

Initial System not running Timer event set to 30 seconds

Green On timer time out event go

to(goYellow) Yellow

Timer event set to 45 seconds

Yellow On timer time out event go

to(goRed) Red

Timer event set to 10 seconds

Red On timer time out event go

to(goGreen) Green

Timer event set to 30 seconds

Table 2: Example of the State Specification Template (SEI)

Table 3: PSP Design Structure for UML (SEI)

Object Specification

Static

Internal External

Class Diagrams Component Diagrams

Deployment Diagrams

Object Diagrams

Dynamic Activity Diagrams

State-Chart Diagrams

Use Cases

Sequence Diagrams

Collaboration Diagrams

RED

YELLOW

GREEN

goRed

goYellow

goGreen

Initial

Table 3: PSP Design Structure for UML (SEI)

Object Specification

Static

Internal External

Class Diagrams Component Diagrams

Deployment Diagrams

Object Diagrams

Dynamic Activity Diagrams

State-Chart Diagrams

Use Cases

Sequence Diagrams

Collaboration Diagrams

GREEN

goYellow

Table 3: PSP Design Structure for UML (SEI)

Figure 2: Example of the Working UML Design Solution for Traffic Light Collaboration (Struct

+/timer

. Timing

Figure 2: Example of the Working UML
Design Solution for Traffic Light Collaboration
(Structure) Diagram

“... the PSP design
templates and design
scripts provide a clear
and concise description

of steps needed to
produce an effective

design in UML.”

PSP/TSP

16 CROSSTALK The Journal of Defense Software Engineering March 2006

the Functional Specification Template.
This template describes timer function-
ality to the traffic light system, which
translates into a collaboration diagram
(Figure 2).

Using UML does not contradict the
TSP philosophy, but in fact works quite
nicely with this highly disciplined
process. In addition, some UML tools
(such as the IBM Rational Rose Real
Time suite, used by the 309 SMXG pro-
ject) offer the unique ability to utilize
these diagrams to create auto-generated
code. The chief reason that size estima-
tion was so difficult for this new 309
SMXG project was due to auto-genera-
tion capability of UML. This seemed to
be the only real issue in dealing with a
modern UML design and development
environment on a TSP project.

A New Size Metric
The problem with using a typical LOC
counter to determine size was the auto-
generated code. When drawing a single
new line in a diagram (what you might
think of as a single SLOC change),
could (and often did) generate dozens of
new and changed SLOC. This was due
to the fact that the tool would rethink the
entire software module, rather than just

the single function being addressed. The
result was that there existed little or no
correlation between SLOC generated
and effort required to produce the
change. A traditional SLOC estimate
would mean little or nothing to this
team; something else was needed for
size and effort estimation.

The size metric required for this pro-
ject had to meet two criteria to be usable
for estimating and tracking: (1) it had to
correlate to the work performed, and (2)
it had to be automatically measurable –
counting any measurement by hand was
deemed to be too slow and inaccurate.
After a great deal of research, the 309
SMXG team decided to try out a rough
approximation of engineer-generated
and auto-generated SLOC. Using what
limited data they had, the team’s design
manager determined that in an average
build, approximately one-third of the
code was user developed (i.e., directly cor-
related to the work performed). The
remaining two-thirds was auto-generat-
ed with considerably less effort on the
engineer’s part. With this in mind, the
team examined modules created by the
original development team prior to the
maintenance phase and applied these
findings to determine adjusted SLOC.

Modules were then estimated using
Adjusted SLOC and the estimates con-
verted to effort using PSP classroom
productivity rates [6].

Once these metrics were determined,
sizes were estimated and effort comput-
ed; this led to the production of the
detailed earned value plan that is the
hallmark of TSP projects.

Running the TSP Project
Since the metrics used to estimate and
track the project size and effort were
new, there was obviously some concern
about the accuracy of the estimates. The
TSP practice of tracking progress at the
personal level and then rolling that data
up to the team level allowed this project
to find and correct potential estimate
issues before the project missed any
schedule deadlines. Effectively, the TSP
and the use of the Process Dashboard
kept members of the team on task and
on schedule [7].

The process steps needed to com-
plete the design were captured as earned
value tasks on each individual software
engineer’s dashboard. The tasks were
then broken down further into some-
thing that could be accomplished on a
weekly basis. During product execution,

Figure 2: Example of the Working UML Design Solution for Traffic Light Collaboration (Structure) Diagram

Task

• Research

• Gather data/documentation

• Identify assumptions

• Analyze

• Analyze/functionally decompose

requirements

• Perform risk analysis

• Identify required system resources

(throughput, speed, memory, etc.)

• Consider alternate solutions

• List the make/buy/reuse alternatives

• List other alternatives

• Utilize decision analysis and resolution as required

• Select solution(s)

• Determine/design interfaces

• Create design document(s)

• Determine and document test requirements

• Perform personal review

• Hold peer reviews/perform corrective actions

• Configure outputs in accordance with the project's

configuration management plan

• Conduct preliminary design review (PDR)

• Coordinate with relevant stakeholder

Verification and Validation

y• Need to create or modif

system design

• Project plans approved

• Resources identified and

available

• Customer requirements

configured

• Perform personal review

• Hold peer reviews/perform corrective actions

• Acceptance of preliminary design by the

interdisciplinary team and the customer

• Relevant stakeholders participate in creation of

outputs and accept the preliminary design

• Design simulation

• PDR

• Preliminary design completed

• PDR completed

• Record project data (effort,

schedule, risk, defect data,

minutes, lessons learned, etc.)

+/timer

. Timing

Entry Exit

Table 4: High Level Design Process Tasks

Designing in UML With the Team Software Process

March 2006 www.stsc.hill.af.mil 17

the team met weekly to ascertain both
team and individual earned value. If a
certain task was taking longer than
expected, it became highly visible to the
team members and the project manager
during the weekly meeting. Any problem
tasks were discussed during weekly team
meetings and addressed by either reas-
signing it to another member or by
addressing the scope with the customer
early enough so as to not cause a sched-
ule slip. In addition, these tasks were
used to determine if some aspects of
the design had been underestimated or
overestimated for the development of
the software. TSP allowed the team to
catch problems at the first sign of an
anomaly and to address it quickly, with-
out significant cost to the customer or
the project [7].

Furthermore, these tasks were based
simply on the steps defined in the pro-
ject that were tailored from the organi-
zational process required by CMMI (see
Table 4). The process descriptions
(called scripts in the TSP) served as handy
references for the team members, detail-
ing what needed to be followed and
completed on the dashboard tracking
tool. The breakdown of the processes
through the dashboard allowed for the
design steps to be tracked individually.

One issue the team did uncover was
a lack of dependency tracking. For
example, if Team Member A needed
Task 1 to be completed by Team
Member B prior to working his/her
task, then Team Member A’s schedule is
dependent upon Team Member B; how-
ever, this dependency is not reflected in
the earned value plan created by the
team during the initial launch.

This is due to the fact that the TSP
earned value plan does not identify these
dependencies. The team found that this
is both a weakness and strength of the
TSP. While the lack of proper depen-
dency tracking often causes confusion
and could result in inaccurate project
status, TSP earned value tracking allows
tasks to be worked in any order. As a
result, team members are free to work
on other issues (clearly identified in their
plan) while they are awaiting the com-
pletion of a dependent task. The danger
is that team members can also choose to
complete all other tasks assigned to
them first and leave the dependency task
for last. This, in effect, creates dead time
for other team members who depend on
the incomplete task. The team solved
this problem by closely coordinating
with each other during the weekly team
meetings [8].

The 309 SMXG project found that it
was possible to run a TSP project with-
in a UML environment.

Lessons Learned
After completion of the design, the
lessons learned from implementation of
the TSP include the following:
• Although the adjusted SLOC estima-

tion worked for first pass through
the project, it has since been found
that it does not always correlate well
to effort. The reason for this is that
the UML tool does not consistently
convert code in the one-third user code
ratio presented above. The UML tool
is highly dependent on the whims of
the auto-generator when converting

UML to SLOC. In future TSP itera-
tions, the team has determined to
find a new method of code counting
and estimating that more accurately
reflects the effort and time spent on
UML. To find this new method,
detailed statistical data is being gath-
ered that reflects UML design
objects and effort taken to produce
them. In the meantime, various size
metrics are being determined and
gathered for code size proxy [8].

• The team determined that TSP does
work in a UML auto-generated code
environment, as long as size estima-
tion issues are properly dealt with
and the percent of time spent in each
phase (design, code, test, etc.) is
adjusted to increase the amount of
time needed to design.

• When designing using UML and
auto-generated code, part of the
design may also be considered imple-
mentation or coding. As a result, the

typical PSP phases must be modified
to reflect that the design phase will
now share tasking from the coding
phase. On our project, this resulted
in a separation of the code phase
into two parts: design/code and
code. The design/code reflected the
auto-generated part of the UML, and
the code reflected the user-entered
portion of the UML implementa-
tion.

Conclusion
The TSP processes were very effective
for this team. Not only did the introduc-
tion of the TSP bring the team’s CMMI
compliance quickly to Level 3 and
beyond, but the structure and format of
the processes allowed for better under-
standing of each team members’
responsibilities and tasks involved in
completion of the design project.u

References
1. Webb, David R., and Watts

Humphrey. “Using the TSP on the
TaskView Project.” CrossTalk
Feb. 1999 <www.stsc.hill.af.mil/
crosstalk/1999/02/index.html>.

2. McHale, James, and Daniel S. Wall.
“Mapping TSP to CMMI.” Pitts-
burgh, PA: Software Engineering
Institute, 22 June 2005.

3. Booch, Grady, James Rumbaugh, and
Ivar Jacobson. The Unified Modeling
Language User Guide. Addison-
Wesley, 2001.

4. Sanderfer, Lynn. “How and Why to
Use the Unified Modeling Language.”
CrossTalk June 2005 <www.stsc.
hill.af.mil/crosstalk/2005/06/0506
sanderfer.html>.

5. Humphrey, Watts S. A Discipline for
Software Engineering. Addison-
Wesley, 1995.

6. Tuma, David, and David R. Webb.
“Personal Earned Value: Why
Projects Using the Team Software
Process Consistently Meet Schedule
Commitments.” CrossTalk Mar.
2005 <www.stsc.hill.af.mil/crosstalk/
2005/03/0503tuma.html>.

7. Webb, David R. “All the Right
Behavior.” CrossTalk Sept. 2002
<www.stsc.hill .af.mil/crosstalk/
2002/09/webb.html>.

8. Webb, David R. “Managing Risk With
TSP.” CrossTalk June 2000 <www.
stsc.hill.af.mil/crosstalk/2000/06/
webb.html>.

“The TSP practice of
tracking progress at the
personal level and then
rolling that data up to
the team level allowed
this project to find and

correct potential
estimate issues before
the project missed any
schedule deadlines.”

PSP/TSP

18 CROSSTALK The Journal of Defense Software Engineering March 2006

Dear CrossTalk Editor,
Kevin Stamey opened the November 2005 issue with these
remarks in his “From the Sponsor” column:

... other engineering design disciplines have been in place
for centuries; however, software engineering is still rela-
tively new. The discipline of software design has only
been matured for a few decades. It wasn’t until the 1960s
that the first software products hit the marketplace ...
Our dominant programming language, C++, didn’t
emerge until the 1980s ...

The relative newness of software engineering is often cited
when explaining the frustrations of the ongoing software crisis.
However, the fact that current practices have only been around for
a few decades, is that really extraordinary? Is our phenomenal
growth all that unique? And have all the other engineering disci-
plines really been around for centuries?

Aeronautical and aerospace engineering may not be as new as
software engineering, but there are certainly not centuries of expe-
rience in those fields. Not long ago, most aircraft were propeller-dri-
ven, and we referred to the sound barrier. Electrical engineering
cannot be considered a centuries-old discipline unless you start with
Ben Franklin’s kite-and-key experiments.

Many of software engineering’s principal tools have indeed been
in place for a relatively short time, but isn’t that true of most engi-
neering disciplines? Niels Bohr’s simplistic model of the atom is less
than 100 years old. Physicists are continually discovering new parti-

cles; researchers are only beginning to explore the possibilities of
quantum computing. Huge advances have been made by materials
scientists, meaning circuitry and silicon technologies have under-
gone several significant advances in a relatively short time.

Indeed, our newness presents some formidable challenges, and
provides fodder for intense debate. But we ought to avoid empha-
sizing that this newness makes us unique, or that our needing to
adapt to rapidly evolving technologies and standards is somehow
exclusive. Such naiveté presents us as making excuses for our short-
comings rather than boldly confronting challenges.

The first transistor was fabricated in the 1940s, and the first
rudimentary integrated circuits were fabricated in the 1950s, about
the same time that early compilers came into being. Software engi-
neers don’t need more time for their field to mature; like others in
technological and engineering fields, we are challenged to advance
and progress in a disciplined yet rapid fashion to keep up with the
monumental advances occurring in the world around us.

There are several aspects of software engineering that set us
apart from other engineering disciplines. Most notably, our end
product is tied to the virtual world, not the physical world. As such,
our discipline is governed less by the laws of physics, and we don’t
rely on equations as fundamental, foundational truths. This makes it
harder to build upon the previous work of theoreticians in a pre-
dictable way – something that I think better explains our slow mat-
uration than our relative newness.

John Reisner
Air Force Institute of Technology

<jreisner@gimail.af.mil>

LETTER TO THE EDITOR

About the Authors

David R. Webb is a
senior technical program
manager for the Software
Division of Hill Air Force
Base in Utah, a Capability
Maturity Model® Level 5

organization. He is a project management
and process improvement specialist with
more than 18 years of technical, program
management, and process improvement
experience with Air Force software. Webb
is a Software Engineering Institute-autho-
rized instructor of the Personal Software
ProcessSM, a Team Software ProcessSM

launch coach, and has worked as an Air
Force section chief, systems software engi-
neer, and test engineer. Webb has a bache-
lor’s degree in electrical and computer engi-
neering from Brigham Young University.

7278 4th ST
BLDG 100 RM 109
Hill AFB, UT 84056
Phone: (801) 940-7005
DSN: 940-7005
E-mail: david.webb@hill.af.mil

Ilya Lipkin is an elec-
tronics engineer at the
309th Software Mainte-
nance Group at the Og-
den Air Logistics Center,
Hill Air Force Base,

Utah. His current research interests
include artificial intelligence, human
knowledge capture and analysis, neural
networks, fuzzy logic, user interface
design, software engineering, and cus-
tomer relations management. Lipkin has
a Bachelor of Science in computer engi-
neering from the University of Toledo, a
Master of Science in computer engineer-
ing from the University of Michigan, and
is a doctoral candidate at the University
of Toledo Business School.

7278 4th ST
BLDG 100 RM 109
Hill AFB, UT 84056
Phone: (801) 586-4477
Fax: (801) 586-2042
E-mail: ilya.lipkin@hill.af.mil

Evgeniy Samurin-Shraer
is an electrical engineer at
the 309th Software Main-
tenance Group at the
Ogden Air Logistic Cen-
ter, Hill Air Force Base,

Utah. His current research interests
include antenna design, resonance fre-
quency circuits, and application of the
microwave theory to the biomedical
problems. Samurin-Shraer has a Bachelor
of Science in electrical engineering and a
Master of Science in electrical engineer-
ing from the University of Toledo.

7278 4th ST
BLDG 100 RM 109
Hill AFB, UT 84056
Phone: (801) 586-2048
Fax: (801) 586-2042
E-mail: evgeniy.samurin-shraer@

hill.af.mil

March 2006 www.stsc.hill.af.mil 19

In his book “Software Craftsmanship:
The New Imperative” [1], Pete

McBreen makes the case that the soft-
ware engineering profession is based on
the wrong metaphor: Instead of an
industrial model that views program-
mers as interchangeable parts in an
assembly line development strategy that
uses a one-size-fits-all process, software
development should be classified as a
form of craftsmanship. McBreen says
that better software projects and higher-
quality products will result only when
software development shifts from appli-
cations of industrial solutions to soft-
ware problems – for example, shifting
from throwing volumes of personnel at
troubled projects in an effort to get the
work done faster – to focusing attention
on practices typically associated with
fine crafting. This includes rewarding
developers for the disciplined imple-
mentation and mastery of their profes-
sion; allowing professionals to use situ-
ationally appropriate, flexible processes;
encouraging people to work together as
members of small, collaborative teams;
and encouraging people to stop mass-
producing good-enough software and
to start creating high-quality work to
which they would be proud to sign their
names.

These tenets are consistent with the
philosophy underlying the Software
Engineering Institute’s (SEISM) Personal
Software ProcessSM (PSPSM), a proven
effective method that takes just such a
craftsman-like approach to software
engineering. PSP-trained developers
strive for quality at the individual level,
take pride in and responsibility for the
work that they produce, and use defined
and disciplined tailorable processes to
produce high-quality work on planned
schedules for predictable costs. The

PSP also provides flexibility since it is
language-independent, allows for tailor-
ing to mesh with established organiza-
tional processes, and can be implement-
ed at any (or every) phase of the soft-
ware development life cycle. It can also
be tailored to fit various project needs
and scaled up or down to address the
needs of teams ranging in size from
three or four individuals to larger teams
of teams.

Since the introduction of the PSP
methodology to the developer commu-
nity in 1993, its effective use in a variety
of academic and industrial settings has
been documented in numerous peer-
reviewed journal articles and technical
reports [2, 3]. This has led to exponen-
tial growth in the adoption of PSP dur-
ing the last decade (along with growing
adoption of its sister technology, the

Team Software ProcessSM [TSPSM]) by
many leading organizations in the soft-
ware development community.

The PSP Body of Knowledge
During the past decade, a variety of arti-
cles, books, and conference proceedings
have documented the successful imple-
mentation of PSP methodologies in a
variety of settings. The PSP technology
has now reached a level of maturity suf-
ficient to allow – even require – further
refinements to be made by the commu-
nity of PSP users, academic institutions,
and certification entities. To encourage
and facilitate this effort, the SEI’s
Software Engineering Process Manage-
ment program authorized the creation
of a PSP Body of Knowledge (PSP
BOK).

For the purposes of this article, a
body of knowledge is defined as a docu-
ment generated by masters of a particu-
lar profession to identify and delineate
the concepts, facts, and essential skills
that professionals and practitioners in
that profession are expected to have
mastered. The PSP BOK is derived
from published literature and docu-
mented reports of practitioner experi-
ence. It is meant to be a concise, one-
stop reference source that provides an
overview of the knowledge and skill
areas that are considered by expert PSP
users to reflect the best practices and
essential core abilities required for suc-
cessful implementation of the PSP
methodology. The PSP BOK is not
meant to be an exhaustive list of every
supporting detail, fact, or formula used
in the PSP, nor should it be regarded as
a Cliffs Notes-type replacement for the
original source documents describing
the PSP methodology [4, 5, 6]. The
main purposes of the PSP BOK are the

Maturing the PSP:Developing a
Body of Knowledge and Professional Certification for

PSP-Trained Software Developers

In the decade since its introduction, the Personal Software ProcessSM (PSPSM) methodology has been adopted by thousands of
individuals and dozens of major corporations the world over. As adoption of the PSP continues to grow, it has become crit-
ical to delineate and document the core skills and knowledge that set PSP practitioners apart from other software engineers.
The PSP Body of Knowledge Vers. 1.0 was released by the Software Engineering Institute in September 2005 to serve this
purpose and to provide individuals, organizations, and academic institutions with an objectively defined set of guidelines
against which they can measure individual capabilities of engineers as well as assess or develop content for PSP-related train-
ing courses, curricula, or credential programs.

Dr. Marsha Pomeroy-Huff
Software Engineering Institute

“... a body of knowledge
is defined as a document
generated by masters of
a particular profession to
identify and delineate the

concepts, facts, and
essential skills that
professionals and

practitioners in that
profession are expected

to have mastered.”

PSP/TSP

20 CROSSTALK The Journal of Defense Software Engineering March 2006

following:
• Define and characterize the basic

essential competencies and standard
practices that a PSP-trained profes-
sional is expected to master.

• Provide a consistent view of PSP in
the community.

• Delineate the skills and knowledge
that set PSP-trained professionals
apart from other software develop-
ers.

• Encourage and facilitate the estab-
lishment of PSP-based courses
and/or software engineering pro-
grams in academic institutions at
both the undergraduate and gradu-

ate levels.
• Establish an objective baseline for

developing and/or assessing PSP
courses and curricula.

• Provide an established baseline for
PSP certification or credential pro-
grams.

• Enable employers to objectively
assess the software skills and capa-
bilities of their software developers
and project development teams.
The PSP BOK is organized accord-

ing to an architectural hierarchy, in
which related key concepts and skills are
grouped into knowledge areas that, in
turn, are grouped into competency areas
(see Figure 1). The PSP BOK uses the
term key concept to describe the intellec-
tual aspects of the PSP content; that is,
the essential information, facts, termi-
nology, and philosophical components
of a technology. The term key skill
refers to the ability of an engineer to
apply knowledge to perform a task.
Together, a group of related key con-
cepts and key skills form a knowledge area
and, in turn, groups of related knowl-
edge areas constitute a competency area.

Version 1.0 of the PSP BOK is com-
posed of seven competency areas:

1. Foundational knowledge from other
disciplines (e.g., statistics).

2. Basic concepts of the PSP.
3. Size measuring and estimating.
4. Making and tracking project plans.
5. Planning and tracking software qual-

ity.
6. Software design.
7. PSP process extensions.
Each competency area is composed of
between three and seven knowledge
areas which, in turn, contain one or
more component key concepts, key
skills, or a combination of the two,
along with a brief description of the rel-
evance and/or application of the con-
cept or skill. The PSP BOK extracts in
Tables 1, 2, and 3 provide an example of
the structure and content of the BOK.
The complete document can be down-
loaded from the SEI’s publications Web
site, <www.sei.cmu.edu/publications/
documents/05.reports/05sr003.html>.

As PSP use continues to grow, fur-
ther additions and evolutions to the
BOK will inevitably follow, particularly
in the competency area covering
process extensions. The PSP BOK
authors invite knowledgeable PSP users
to submit suggestions and input for
future revisions to the BOK.

Applications of the
PSP BOK
The PSP BOK is intended for use in a
variety of professional, industrial, and
academic settings. For example, it can
be used as a basis for credentialing prac-
titioners who have attained proficiency
in all of the key concepts and skills that
the BOK comprises. This section dis-
cusses several potential uses of the PSP
BOK in more detail.

Information contained in the PSP
BOK can be used by individuals and
employers in assessing the skills of soft-
ware development professionals. Since
personnel costs constitute well over half
the budget of most software develop-
ment projects, the skills of software
developers have a large effect on the
cost, schedule, and quality of the prod-
ucts produced. Employers are increas-
ingly interested in hiring individuals
who possess skills that allow them to
work in a variety of software domains
using disciplined and replicable meth-
ods – such as PSP – to consistently turn
out well-crafted and high-quality work.

The essential concepts and skills
required for proficient implementation
of the PSP methodology are delineated
in the PSP BOK. Therefore, the docu-

Figure 1: BOK Architectural Hierarchy

Figure 1: BOK Architectural Hierarchy

Competency Area 7: Process Extensions and Customization

Competency Area

Description

This competency area describes the modifications to the PSP that are

required when scaling up from smaller programs to larger ones, when

working with unfamiliar situations or environments, or when moving to

team-based development instead of working alone.

Knowledge Areas 7.1 Defining a Customized Personal Process

7.2 Process Evolution

7.2 Advanced Process Applications

References [Horn 90]

[Humphrey 95, pp. 483-485, 725-740]

[Humphrey 05a, Chapter 13]

Description of the Process Extensions and Customization Knowledge Areas

7.1 Defining a

Customized

Personal

Process

A defined process should not be regarded as one size fits all. This

knowledge area addresses situations in which processes must be

customized to meet changes in needed outputs or developed from the

ground up to address new situations or environments.

7.2 Process

Evolution

A process cannot be evolved to fit changing needs or situations until

the current process accurately represents what is actually done when

using that process. This knowledge area addresses the activities

involved with incrementally evolving an initial process into one that is

an accurate and complete description of the actual process.

7.3 Advanced

Process

Applications

Experienced PSP users may encounter situations when the original

PSP processes may not be conveniently applicable for planning and

developing a product. Modifications of the PSP, such as the Prototype

Experimental Process (PEP) and the Product Maintenance Process

(PMP), allow the application of PSP concepts and skills to such

situations.

Key Concepts

Competency Areas

Knowledge Areas

Key Skills

Competency Area

Number and Name
7. Process Extensions and Customization

Knowledge Area

Number and Name
Description

Table 1: Example of BOK Competency Area Content and OrganizationFigure 1: BOK Architectural Hierarchy

 Competency Area 7: Process Extensions and Customization

Competency Area

Description

This competency area describes the modifications to the PSP that are

required when scaling up from smaller programs to larger ones, when

working with unfamiliar situations or environments, or when moving to

team-based development instead of working alone.

Knowledge Areas 7.1 Defining a Customized Personal Process

7.2 Process Evolution

7.2 Advanced Process Applications

References [Horn 90]

[Humphrey 95, pp. 483-485, 725-740]

[Humphrey 05a, Chapter 13]

Description of the Process Extensions and Customization Knowledge Areas

7.1 Defining a

Customized

Personal

Process

A defined process should not be regarded as one size fits all. This

knowledge area addresses situations in which processes must be

customized to meet changes in needed outputs or developed from the

ground up to address new situations or environments.

7.2 Process

Evolution

A process cannot be evolved to fit changing needs or situations until

the current process accurately represents what is actually done when

using that process. This knowledge area addresses the activities

involved with incrementally evolving an initial process into one that is

an accurate and complete description of the actual process.

7.3 Advanced

Process

Applications

Experienced PSP users may encounter situations when the original

PSP processes may not be conveniently applicable for planning and

developing a product. Modifications of the PSP, such as the Prototype

Experimental Process (PEP) and the Product Maintenance Process

(PMP), allow the application of PSP concepts and skills to such

situations.

Key Concepts

Competency Areas

Knowledge Areas

Key Skills

Competency Area

Number and Name
7. Process Extensions and Customization

Knowledge Area

Number and Name
Description

Table 2: Example of BOK Knowledge Area Content and Organization

ure 1: BOK Architectural Hierarchy

 ompetency Area 7: Process Extensions and Customization

Competency Area

Description

This competency area describes the modifications to the PSP that are

required when scaling up from smaller programs to larger ones, when

working with unfamiliar situations or environments, or when moving to

team-based development instead of working alone.

Knowledge Areas 7.1 Defining a Customized Personal Process

7.2 Process Evolution

7.2 Advanced Process Applications

References [Horn 90]

[Humphrey 95, pp. 483-485, 725-740]

[Humphrey 05a, Chapter 13]

escription of the Process Extensions and Customization Knowledge Areas

7.1 Defining a

Customized

Personal

Process

A defined process should not be regarded as one size fits all. This

knowledge area addresses situations in which processes must be

customized to meet changes in needed outputs or developed from the

ground up to address new situations or environments.

7.2 Process

Evolution

A process cannot be evolved to fit changing needs or situations until

the current process accurately represents what is actually done when

using that process. This knowledge area addresses the activities

involved with incrementally evolving an initial process into one that is

an accurate and complete description of the actual process.

7.3 Advanced

Process

Applications

Experienced PSP users may encounter situations when the original

PSP processes may not be conveniently applicable for planning and

developing a product. Modifications of the PSP, such as the Prototype

Experimental Process (PEP) and the Product Maintenance Process

(PMP), allow the application of PSP concepts and skills to such

situations.

Key Concepts

Competency Areas

Knowledge Areas

Key Skills

Competency Area

Number and Name
7. Process Extensions and Customization

Knowledge Area

Number and Name
Description

Maturing the PSP: Developing a Body of Knowledge and Professional Certification for PSP-Trained Software Developers

March 2006 www.stsc.hill.af.mil 21

ment can be used to assist software
engineering professionals in assessing
their own skills and proficiencies and in
identifying areas in which they may need
further improvement. The PSP BOK
can also be used by employers who want
to establish an objective baseline for
measuring the software development
skills and capabilities of their engineers
and product development teams. By
understanding software engineering
best practices, the industry can imple-
ment improvement efforts within its
organizations, thereby achieving higher
quality products and better management
of costs and schedules.

The PSP BOK can assist academic
institutions in updating software engi-
neering or computer science curricula to
reflect current software development
practices used in industry. With the
growing adoption of PSP and TSP, it is
likely that employers will begin to
require that newly hired developers pos-
sess PSP skills. The PSP BOK provides
academic institutions with guidelines
that will help them prepare students to
work in industries that require individu-
als who are able to follow disciplined
software development practices. Some
institutions may choose to offer a PSP
course, while others may choose to inte-
grate PSP into several of their courses.

In both cases, institutions can use
the guidance provided by the PSP BOK
to ensure that students receive adequate
instruction in and experience with fun-
damental PSP concepts and practices.
PSP instruction offered by academic
institutions will also provide a bench-
mark for industrial or commercial enti-
ties that may be interested in developing
training programs based on the PSP
BOK. Academic instruction in the
BOK competencies, knowledge areas,
key concepts, and key skill areas also
provides a baseline for assessing the
quality of instruction offered through
industrial or commercial training or
other such venues.

The PSP BOK may also serve as a
foundation for creation of credentials
or certifications that serve as a hallmark
of a professional’s ability to craft high-
quality products. Certification is one of
the most widely used mechanisms
employed by a profession to make
explicit the core set of knowledge and
skills that a professional is expected to
master. Certification also establishes a
mechanism for objectively assessing
mastery of those core competencies,
and provides a foundation for continu-
ing qualification of individual profes-

sionals.
Thus, the PSP BOK provides an

objective and concise description of the
necessary skills and knowledge needed
for attaining a craftsman level of compe-
tence in software development. The
successful completion of courses, cur-
ricula, or credential programs that are
based on the content of the PSP BOK
provides a tangible measure of an indi-
vidual’s proficiency as part of an elite
guild of software development crafters.

Conclusion
As PSP has gained acceptance by a
broad spectrum of users within the
software engineering community, the
methodology has achieved sufficient
stability and maturity to necessitate the
documentation of the core skills and
knowledge that set PSP practitioners
apart from other software engineers.
The PSP BOK Vers. 1.0 was released by
the SEI in September 2005 to serve this
purpose and to provide individuals,
organizations, and academic institutions
with an objectively defined set of guide-
lines against which they can measure
individual capabilities of engineers, as
well as determining the content required
for effective PSP-related training cours-
es or curricula. Completion of courses,
curricula, or credential programs based
on the PSP BOK will allow software
professionals to effectively demonstrate
the specialized knowledge and skills that
set them apart from other programmers
and allow them to consistently produce
high-quality, well-crafted products.u

References
1. McBreen, Pete. Software Craftsman-

ship: The New Imperative. Addison-
Wesley, 2001.

2. Hayes, Will, and James Over. The
Personal Software Process: An Empir-
ical Study of the Impacts of PSP on
Individual Engineers. Pittsburgh, PA:

Carnegie Mellon University, Dec. 1997.
3. Kamatar, Jagadish, and Will Hayes. “An

Experience Report on the Personal
Software Process.” IEEE Software
17.6 (Nov./Dec. 2000): 85-89.

4. Humphrey, Watts. A Discipline for
Software Engineering. Addison-
Wesley, 1995.

5. Humphrey, Watts. Introduction to the
Personal Software Process. Addison-
Wesley, 1997.

6. Humphrey, Watts. PSP: A Self-
Improvement Process for Software
Engineers. Addison-Wesley, 2005.

Knowledge Area 7.3: Advanced Process Applications

Experienced PSP users may encounter situations when the original PSP processes may not be

conveniently applicable for planning and developing a product. Modifications of the PSP such

as the Prototype Experimental Process (PEP) and the Product Maintenance Process (PMP)

allow the application of PSP concepts and skills to such situations.

7.3.1 Prototype

Experimental

Process

(PEP)

Use the PEP when working in unfamiliar programming environments

or when building prototype systems with loosely defined or poorly

understood requirements.

7.3.2 Product

Maintenance

Process

(PMP)

Use the PMP when making modifications, enhancements, or repairs to

legacy systems with large or defective base code.

Key Concept

Number and Name
Description

Table 3: Example of BOK Key Concepts Content and Organization

About the Author

Marsha Pomeroy-Huff,
Ed.D., is a member of
the technical staff at the
Software Engineering
Institute (SEISM). Since
joining the SEI in 1992,

she has focused her work in the area of
technology transition, specializing in
development of educational products
for software engineering practitioners.
She is currently a member of the
Personnel Software ProcessSM (PSPSM)/
Team Software ProcessSM (TSPSM)
Initiative and the PSP Professional
Certification team, and is primary
instructor for SEI’s Introduction to
Personal Process course. Pomeroy-Huff
has a doctorate in instructional design
and technology from the University of
Pittsburgh.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890
Phone: (412) 268-3423
Fax: (412) 268-5758
E-mail: mph@sei.cmu.edu

22 CROSSTALK The Journal of Defense Software Engineering March 2006

Test case is a fundamental term used
by all software testers. Numerous

published sources, including the Institute
of Electrical and Electronics Engineers
(IEEE) Standard 610 (IEEE Std. 610),
define what a test case is, techniques to
design test cases, and templates to docu-
ment them. However, testers in the field
still find these definitions confusing, and
they frequently mean different things
when referring to test cases.

A common misunderstanding of test
cases can be a symptom of a larger issue
– a misunderstanding of the logic of soft-
ware testing. The main purpose of soft-
ware testing can be defined as exploring
the software product to derive and report
valid conclusions about its quality and
suitability for use. In this regard, software
testing is similar to mathematics – they
both need proofs for their conclusions.
However, mathematicians surpass soft-
ware testers in deriving and proving their
conclusions thanks to their skill in using a
powerful tool called deductive reasoning. To
construct valid arguments, logicians have
developed proof strategies and tech-
niques based on the concepts of symbol-
ic logic and proof theory [1, 2, 3].

On critical software projects, testers
have always been required to present valid
evidence supporting their conclusions
about the product’s quality. The recent
Sarbanes-Oxley Act1 makes this require-
ment much more important going for-
ward. In this article, I discuss the logic of
one of the conventional levels of testing
– system test [4] – and propose a formal
approach to constructing valid arguments
supporting testers’ conclusions. Finally,
understanding the system test logic can
help testers better understand the mean-
ing of test cases.

Proofs and Software Testing
Software testers have always dealt with
proofs on their projects. One example can
be concluding that a system passed testing.
As testers can never prove the absence of
bugs in a software product, their claim
that a system passed testing is conditional

upon the evidence and arguments sup-
porting such a claim. On critical projects,
either the project’s manager, end-users, or
a compliance department commonly
require documented test cases and test
execution logs to be used as grounds for
supporting testers’ conclusion that a soft-
ware product passed testing.

Another example is reporting a system
failure. Regardless whether it is formal
testing or unscripted exploratory testing,
testers are required to document and
report the defects they find. By reporting
a defect, a tester first claims that a certain
system feature failed testing and, second,
presents an argument in the form of a
defect description to support the claim.
Such an argument should be logically
valid to be sufficiently convincing for
developers.

Deriving conclusions and presenting
valid proofs, also known in mathematics
as logical arguments, is frequently not a
trivial matter. That is why mathematicians
use deductive reasoning as a foundation for
their strategies and techniques to derive
conclusions and present valid arguments.
Deductive reasoning is the type of rea-
soning used when deriving a conclusion
from other sentences that are accepted as
true [3]. As I discuss in this article, soft-
ware testers can also benefit from using
deductive reasoning. First, they can better
understand the logic of software testing
and, second, they can construct valid
proofs better supporting their conclu-
sions about product quality.

Applying Deductive
Reasoning to Software Testing
In mathematics, the process of deriving a
conclusion results in presenting a deduc-
tive argument or proof that is defined as
a convincing argument that starts from
the premises and logically deduces the
desired conclusion. The proof theory dis-
cusses various logical patterns for deriv-
ing conclusions, called rules of inference,
that are used as a basis for constructing
valid arguments [2, 3]. An argument is
said to be valid if the conclusion neces-

sarily follows from its premise. Hence, an
argument consists of two parts – a con-
clusion, and premises offered in its sup-
port. Premises, in turn, are composed of
an implication and evidence. Implications
are usually presented as conditional
propositions, for example, (if A, then B).
They serve as a bridge between the con-
clusion and the evidence from which the
conclusion is derived [1]. Thus, the impli-
cation is very important for constructing
a logical argument as it sets the argument’s
structure and meaning. In the following, I
will apply this concept to software testing
and identify the argument components
that can be used in testing to construct
valid proofs.

In software testing, we derive and
report conclusions about the quality of a
product under test. In particular, in sys-
tem testing a common unit of a tester’s
work is testing a software feature (also
known in Rational Unified Process as test
requirement); the objective is to derive a
conclusion about the feature’s testing sta-
tus. Hence, the feature status, commonly
captured as pass or fail, can be considered
a conclusion of the logical argument. To
derive such a conclusion, test cases are
designed and executed. By executing test
cases, information is gained, i.e., evidence
is acquired that will support the conclu-
sion. To derive a valid conclusion, also
needed are implications that in system
testing are known as a feature’s pass/fail
criteria. Finally, both the feature’s
pass/fail criteria and the test case execu-
tion results are the premises from which a
tester derives a conclusion. The lack of
understanding of how system testing
logic works can lead to various issues –
some of the most common of which I
will discuss next.

Common Issues With
Testing Logic
Issue 1: Disagreeing About the
Meaning of Test Cases
Software testers frequently disagree about
the meaning of test cases. Many testers
would define a test case as the whole set

Understanding the Logic of System Testing
Dr. Yuri Chernak

Valley Forge Consulting, Inc.

What do system testing and mathematics have in common? They both deal with proofs. This article discusses the logic of sys-
tem testing, and the steps to construct valid proofs that testers need to perform for their conclusions about the quality of a soft-
ware product.

Software Engineering Technology

Understanding the Logic of System Testing

March 2006 www.stsc.hill.af.mil 23

of information designed for testing the
same software feature and presented as a
test-case specification. Their argument is
that all test inputs and expected results are
designed for the same objective, i.e., test-
ing the same feature, and they all are used
as supporting evidence that the feature
passed testing.

For other testers, a test case consists of
each pair – input and its expected result –
in the same test-case specification. In
their view, such a test-case specification
presents a set of test cases. To support
their point, they refer to various text-
books on test design, for example [4, 5],
that teach how to design test cases for
boundary conditions, valid and invalid
domains, and so on. Commonly, these
textbooks focus their discussion on
designing test cases that can be effective
in finding bugs. Therefore, they call each
pair of test input and its expected output
a test case because, assuming a bug is in
the code, such a pair provides sufficient
information to find the bug and conclude
that the feature failed testing.

Despite these different views, both
groups actually imply the same meaning
of the term test case: information that pro-
vides grounds for deriving a conclusion
about the feature’s testing status.
However, there is an important differ-
ence: The first group calls test case the
information that supports the feature’s
pass status, while the second group calls
test case the information that supports the
feature’s fail status. Such confusion appar-
ently stems from the fact that all known
definitions of the term test case do not
relate it to a feature’s pass/fail criteria.
However, as the discussion in the sidebar
shows, these criteria are key to under-
standing the meaning of test cases.

Issue 2: Presenting an Argument
Without a Conclusion
This issue is also very common. As dis-
cussed earlier, an important part of a log-
ical argument is its conclusion. However,
a lack of understanding of this concept
can lead to presenting arguments without
conclusions. On a number of projects, I
have seen testers produce test case docu-
mentation in the form of huge tables or
Excel spreadsheets listing their test cases.
In such tables, each row shows a test case
represented by a few columns such as test
case number, test input, expected result,
and test case execution (pass/fail) status.
What is missing in this documentation is
a description of what features testers
intend to evaluate using these test cases.
As a result, it is difficult to judge the valid-
ity and verify the completeness of such

test cases as the underlying purpose for
which they were designed is not known.
Such documentation suggests that the
testers who designed it do not completely
understand the logic of software testing.

Issue 3: Presenting an Argument
Without an Implication
This issue also stems from a lack of
understanding of the structure of a logi-
cal argument, specifically that having an
implication is necessary for deriving a
valid conclusion. In software testing,
such implications are a feature’s pass/fail
criteria. The issue arises when such crite-
ria are either forgotten or not clearly
defined and understood by testers. This
can lead to a situation where testers lose
sight of what kind of conclusions they
need to report. As a result, instead of
deriving a conclusion about the feature
and then reporting its testing status, they
report the status of each executed test
case. This situation presents an issue

illustrated in the following example.
Let us assume a tester needs to test 10

software features, and he or she designed
10 test cases for each of the features
under test. Thus, the entire testing
requires executing 100 test cases. Now,
while executing test cases, the tester
found that one test case failed for each of
the features. In our example, the tester did
not define and did not think about the
feature pass/fail criteria. Instead, the
tester reported to a project manager the
testing status for each executed test case.
Thus, at the end of the testing cycle, the
results show that 90 percent of testing
was successful. When seeing such results,
a manager would be fairly satisfied and
could even make a decision about releas-
ing the system.

The project manager would see a
completely different picture if the fea-
tures’ pass/fail criteria were not forgot-
ten. In this case, the testers would report
the testing status for each feature as

What Do We Call a Test Case?

Most of the published sources defining the term test case follow the definitions given
in the Institute of Electrical and Electronics Engineers (IEEE) Standard 610 (IEEE
Std. 610):

a) Test Case: A set of test inputs, execution conditions, and expected results devel-
oped for a particular objective such as to exercise a particular program path or
to verify compliance with a specific requirement.

b) Test Case: Documentation specifying inputs, predicted results, and a set of exe-
cution conditions for a test item.

Despite the fact that this standard was published many years ago, testers in the
field still do not have a consistent understanding of the meaning of test cases. To bet-
ter understand this meaning, we can use the concept of deductive reasoning.
Following this concept, system testing can be viewed as a process of deducing valid
conclusions about the testing status of system features based on evidence acquired
by executing test cases. Hence, the main purpose of executing test cases is to gain
information about the system implementation. This information can be used together
with the feature’s pass/fail criteria to derive and support conclusions about the status
of feature testing. The feature’s pass/fail criteria are important implications in the test-
ing argument that determine the meaning of testers’ conclusions. These criteria are a
link between a tester’s conclusion about the feature status and the test cases used to
support the conclusion. Hence, the meaning of test cases follows from the definition
of the feature’s pass/fail criteria.

In system testing, the mission is finding and reporting software defects; the feature
fail criterion is commonly defined as, “If any of the feature’s test cases fails, then the
feature fails testing.” What follows from this implication is that a test case is informa-
tion that is sufficient to identify a software defect by causing a system feature to fail.
The feature’s pass criterion can further explain the meaning of test cases. It is com-
monly defined as, “The feature passes the test only if all of its test cases pass testing.”
According to this definition, we imply that the system feature passed testing only if the
whole group of its test cases passed testing. Hence, test cases are used as collective
evidence to support the feature’s pass status. It should be noted, however, that this
interpretation of the test-case meaning refers to the system test only. In contrast, in
acceptance testing a testing mission and pass/fail criteria can be defined differently
from the system testing. Correspondingly, the meaning of test cases can be different
as well.

If the IEEE definitions of test cases are examined again, we can see that these def-
initions are not specific to a particular testing mission, nor are they explicit about which
testing conclusion, i.e., pass or fail, a test case is intended to support. Instead, they
focus primarily on the test case structure: test inputs and expected results. As a result,
these definitions alone and without the feature’s pass/fail criteria lack clarity about the
test case purpose and meaning.

Software Engineering Technology

24 CROSSTALK The Journal of Defense Software Engineering March 2006

opposed to each test case. If the feature
fail criterion were defined as, “If any of
the feature’s test cases fails, then the fea-
ture fails testing,” then the testing end-
result in our example would have been
quite the opposite and have shown that
none of the software features passed test-
ing; they all should be re-tested when the
bugs are fixed.

An Approach to Constructing
A Valid Proof
Constructing a valid proof in system test-
ing can be defined as a four-step proce-
dure. The following sections discuss each
step in detail, and explain how to con-
struct a valid argument to support a test-
ing conclusion.

Step 1: Define a Conclusion of the
Argument
In constructing a proof, always begin by
defining what needs to be proven, i.e., the
conclusion. In system testing, the ultimate
goal is to evaluate a software product.
This is achieved by decomposing the
entire functional domain into a set of
functional features where each feature to
be tested is a unit of a tester’s work that
results in one of the two possible conclu-
sions about a feature’s testing status pass
or fail. At any given time, only one of the
two conclusions is valid.

The term software feature is defined in
the IEEE Std. 610 as follows:
a) A distinguished characteristic of a

software item.
b) A software characteristic specified or

implemented by requirements docu-
mentation.
From a tester’s perspective, a software

feature means any characteristic of a soft-
ware product that the tester believes
might not work as expected and, there-
fore, should be tested. Deciding what fea-
tures should be in the scope of testing is
done at the test-planning phase and docu-
mented in a test plan document. Later, at
the test design phase, the list of features is
refined and enhanced based on a better
understanding of the product’s function-
ality and its quality risks. At this phase,
each feature and its testing logic are
described in more detail. This informa-

tion is presented either in test design
specifications and/or in test case specifi-
cations.

The test design specification com-
monly covers a set of related features;
whereas, the test case specification com-
monly addresses testing of a single fea-
ture. At this point, a tester should already
know which quality risks to focus on in
feature testing. Understanding the fea-
ture’s quality risks, i.e., how the feature
can fail, is important for designing effec-
tive test cases that a tester executes to
evaluate the feature’s implementation and
derive a conclusion about its testing sta-
tus. Performing Step 1 can help testers
avoid Issue No. 2 as discussed earlier.

Step 2: Define an Implication of
the Argument
The next important step is to define an
implication of an argument. An implica-
tion of a logical argument defines an
important relation between the conclusion
and the premises given in its support.
Correspondingly, the feature’s pass/fail cri-
teria define the relation between the results
of test-case execution and the conclusion
about the feature’s evaluation status.

According to the IEEE Std. 829, the
feature’s pass/fail criteria should be
defined in the test design specification;
this standard provides an example of
such a specification. However, it does not
provide any guidance on how to define
these criteria, apparently assuming this
being an obvious matter that testers know
how to handle. Neither do the textbooks
on software testing methodology and test
design techniques. Contrary to this view, I
feel that defining these criteria is one of
the critical steps in test design that
deserves a special consideration. As I dis-
cussed earlier and illustrated as Issue No.
3, the lack of understanding of the role
and meaning of the feature’s pass/fail cri-
teria can lead to logically invalid testing
conclusions in system testing. Also, as dis-
cussed in the sidebar, from the well-
defined implications, i.e., the features’
pass/fail criteria, testers can better under-
stand the meaning of test cases and avoid
the confusion discussed earlier as Issue
No. 1.

The rationale for defining the feature’s
pass/fail criteria stems from the system
test mission that can be defined as critical-
ly examining the software system under the full
range of use to expose defects and to report con-
ditions under which the system is not compliant
with its requirements. As such, the system
test mission is driven by the assumption
that a system is not yet stable and has
bugs; the testers’ job is to identify condi-
tions where the system fails. Hence, our
primary goal in system testing is to prove
that a feature fails the test. To do that,
testers develop ideas about how the fea-
ture can fail. Then, based on these ideas,
testers design various test cases for a fea-
ture and execute them to expose defects
in the feature implementation. If this
happens, each test case failure provides
sufficient grounds to conclude that the
feature failed testing. Based on this logic,
the feature’s fail criterion can be defined
as, “If any of the feature’s test cases fail,
then the feature fails testing.” In logic, this
is known as a sufficient condition (if A,
then B). The validity of this implication
can also be formally proved using the
truth-table technique [1]; however, this
goes beyond the scope of this article.

Defining the feature’s pass criterion is
a separate task. In system testing, testers
can never prove that a system has no
bugs, nor can they test the system forever.
However, at some point and under certain
conditions they have to make a claim that
a feature passed testing. Hence, the sup-
porting evidence, i.e., the test case execu-
tion results, can only be a necessary (C,
only if D), but not a sufficient condition of
the feature’s pass status. Based on this
logic, the feature’s pass criterion can be
defined as, “The feature passes the test
only if all of its test cases pass testing.” In
this case, the feature’s pass criterion
means two things:
a) The feature pass conclusion is condi-

tional upon the test execution results
presented in its support.

b) Another condition may exist that
could cause the feature to fail.

Step 3: Select a Technique to Derive
a Conclusion
Once we have defined all components of
a testing argument, the next step is to
select a technique that can be used to
derive a valid conclusion from the premis-
es. The word valid is very important at this
point as we are concerned with deducing
the conclusion that logically follows from
its premises. In the proof theory, such
techniques are known as rules of inference
[1, 2]. By using these rules, a valid argu-
ment can be constructed and its conclu-

Modus Ponens Form Testing Argument Form

1. If A, then B – means 1. If any test case fails, then a feature fails (implication).

2. A is true – means 2. We know that at least one test case failed (evidence).

3. Then B is true – means 3. Then the feature fails the test (conclusion).

Table 1: Deriving a Feature Fail Conclusion

Understanding the Logic of System Testing

March 2006 www.stsc.hill.af.mil 25

sion deduced through a sequence of
statements where each of them is known
to be true and valid. In system testing,
there are two types of conclusions – a fea-
ture fail status and a feature pass status.
Correspondingly, for each of these con-
clusions, a technique to construct a valid
argument is discussed. On software pro-
jects, testers should discuss and define the
logic of constructing valid proofs before
they begin their test design. For example,
they can present this logic in the Test
Approach section of a test plan document.

Deriving a Feature Fail Conclusion
I defined the feature’s fail criterion as a
conditional proposition in the form (if A,
then B), which means if any of the test
cases fail, then testers can conclude that
the feature fails as well. This also means
that each failed test case can provide suf-
ficient evidence for the conclusion. In this
case, a valid argument can be presented
based on the rule of inference, known as
Modus Ponens [1, 2]. This rule is defined as
a sequence of three statements (see Table
1). The first two statements are premises
known to be true and lead to the third
statement, which is a valid conclusion.

Deriving a Feature Pass Conclusion
The feature’s pass criterion was defined as
a conditional proposition in the form (C,
only if D), which means a feature passes the
test only if all of its test cases pass testing.
This also means that such a conclusion is
derived only when all of the feature’s test
cases have been executed. At this point,
the feature status can be either pass or fail,
but not anything else. Hence, the rule of
inference can be used, known as Disjunctive
Syllogism [1, 2], which is presented as three
consecutive statements that comprise a
valid argument (see Table 2).

Step 4: Present an Argument for a
Conclusion
At this point, there is a clear plan on how
to construct valid arguments in system
testing. The actual process of deriving a
testing conclusion begins with executing
test cases. By executing test cases, the
testers can learn the system’s behavior and
analyze the feature implementation by
comparing it to its requirements captured
by expected results of test cases. As a
result, testers can acquire evidence from
which they can derive and report a valid
testing conclusion, i.e., a feature pass or
fail testing status.

Concluding a Feature Fail Status
The feature fail criterion is defined as, “If
any of the test cases fails, then the feature

fails testing.” According to the Modus
Ponens rule, this means that each failed
test case provides grounds for the valid
conclusion that the feature has failed test-
ing. As a feature can fail on more than one
of its test cases, after finding the first
defect a tester should continue feature
testing and execute all of its test cases.
After that, the tester should report all
instances of the feature failure by submit-
ting defect reports, where each defect
report should be a valid argument that
includes the evidence supporting the fea-
ture fail status.

On the other hand, if a given test case
passed testing, the Modus Ponens rule
does not apply, and there are no grounds
for any conclusion at this point, i.e., the
feature has neither passed nor failed test-
ing. Finally, only when all of the feature’s
test cases have been executed should it be
decided whether there are grounds for the
feature pass status as discussed in the next
section.

Concluding a Feature Pass Status
Obviously, if the feature has already
failed, the pass status cannot have
grounds. However, if none of the test
cases failed, then the Disjunctive
Syllogism rule can be applied. According
to this rule, the fact that none of the test
cases failed provides grounds for a valid
conclusion: the feature passed testing. To
support this claim, evidence is provided –
test case execution results. However, this
conclusion should not be confused with
the claim that the feature implementation
has no bugs, which we know is impossible
to prove. The conclusion means only that
the feature did not fail on the executed
test cases that were presented as evidence
supporting the conclusion.u

References
1. Copi, I., and C. Cohen. Introduction

to Logic. 11th ed. Prentice-Hall, 2002.
2. Bloch, E. Proof and Fundamentals.

Boston: Birkhauser, 2000.
3. Rodgers, N. Learning to Reason. An

Introduction to Logic, Sets, and

Relations. John Willey & Sons, 2000.
4. Meyers, G. The Art of Software

Testing. John Wiley & Sons, 1979.
5. Kit, E. Software Testing In the Real

World. Addison-Wesley, 1995.

Note
1. The Sarbanes-Oxley Act <http://

news.findlaw.com/hdocs/docs/gw
bush/sarbanesoxley072302.pdf>.

Acknowledgements
I am grateful to the CrossTalk review-
ers, to the distinguished professor Sergei
Artemov at the graduate center of the
City University of New York, and to
Robin Goldsmith at GoPro Management
for their feedback and comments that
helped me improve this article.

Table 2. Deriving a Feature Fail Conclusion

M

Disjunctive Syllogism Form Testing Argument Form

1. Either P or Q is true – means 1. After all test cases have been executed, a feature

status can be either fail (P) or pass (Q) (implication).

2. P is not true – means 2. We know that the feature did not fail the test for

all of its test cases (evidence).

3. Then Q is true – means 3. Then the feature passes the test (conclusion).

Table 2: Deriving a Feature Pass Conclusion

About the Author

Yuri Chernak, Ph.D., is
the president and princi-
pal consultant of Valley
Forge Consulting, Inc.
As a consultant, Chernak
has worked for a number

of major financial firms in New York
helping senior management improve the
software testing process. Currently, his
research focuses on aspect-oriented
requirements engineering, use-case-dri-
ven testing, and test process assessment
and improvement. Chernak is a member
of the Institute of Electrical and
Electronics Engineers (IEEE) Computer
Society. He has been a speaker at several
international conferences, and has pub-
lished papers on software testing in
IEEE publications and other profes-
sional journals. Chernak has a doctorate
in computer science.

Valley Forge Consulting, Inc.
233 Cambridge Oaks ST
Park Ridge, NJ 07656
Phone: (201) 307-4802
E-mail: ychernak@yahoo.com

26 CROSSTALK The Journal of Defense Software Engineering March 2006

Information technology (IT) outsourc-
ing arrangements frequently employ

service-level agreements (SLAs) that use
terms such as availability and reliability.
The intent is that the buyer requests a spe-
cific system availability and reliability (e.g.,
98 percent to 99.9 percent, and 85 percent
to 90 percent, respectively). The service
provider is typically rewarded for exceed-
ing specified limits and/or punished for
falling below these limits.

In recent years, another term, surviv-
ability, has become popular and is used to
express yet another objective: the ability of
a system to continue functioning after the
failure of one of its components. This
article examines these terms so buyer and
seller can understand and use them in a
contractual context and designers/opera-
tors can choose optimal approaches to
satisfying the SLAs.

The northeastern U.S. power grid fail-
ure in August 2003 drew attention to the
availability, reliability, and survivability of
business-critical IT systems. Catastrophe
can be the catalyst for new thinking about
the survivability of IT systems.

From the buyer’s perspective, an
increase in availability, reliability, and sur-
vivability comes at a price: 100 percent is
not possible, but 98 percent might be
affordable and adequate while 99.99 per-
cent might be unaffordable or excessive.
From the service provider’s perspective,
under-engineering or inadequate operating
practices can result in penalties for failing
to meet SLAs.

Availability
What Is Availability?
Availability is influenced by the following:
• Component Reliability. A measure

of the expected time between compo-
nent failures. Component reliability is
affected by electromechanical failures
as well as component-level software
failure.

• System Design. The manner in
which components are interrelated to
satisfy required functionality and relia-
bility. Designers can enhance availabil-
ity through judicious use of redundan-

cy in the arrangement of system com-
ponents.

• Operational Practices. Operational
practices come into play after the sys-
tem is designed and implemented with
selected components. Interestingly,
after a system is designed, components
are selected and the system is imple-
mented. The only factor that can
improve or degrade availability is oper-
ational practices.
Informally, system availability is the

expected ratio of uptime to total elapsed
time. More precisely, availability is the
ratio of uptime and the sum of uptime,
scheduled downtime, and unscheduled
downtime:

Uptime
A1 =

(1)

Uptime + Downtime

The formula (1) is useful for measuring
availability over a given period of time
such as a calendar quarter, but not very
useful for predicting availability or engi-
neering a system to satisfy availability
requirements. For this purpose, system
designers frequently employ a model
based on mean time between failure
(MTBF) and mean time to repair (MTTR),
usually expressed in units of hours:

MTBF
A2 =

(2)

MTBF + MTTR

Formula (2) is analogous to formula (1),
but is based on statistical measures instead
of direct observation. Most vendors pub-
lish MTBF data. MTTR data can often be
collected from historical data. Interest-
ingly, MTTR is partially within the control
of the system operator. For example, the
system operator may establish a strategy
for spares or provide more training to the
support staff to reduce the MTTR.
Because of these factors, component ven-
dors typically do not publish MTTRs.
Finally, it should be noted that A2 does not
explicitly account for scheduled downtime.

The most common approach to
include scheduled maintenance time is to
include it in the total time represented in

the mathematical model’s denominator,
thus reducing expected availability com-
mensurately. This provides an additional
challenge for the designer, but like MTTR
it is somewhat controllable through oper-
ational procedures. If the system can be
designed for only infrequent preventive
maintenance, then availability is enhanced.

In most operational environments, a
system is allowed to operate normally,
including unscheduled outages, for some
fixed period of time, t, after which it is
brought down for maintenance for some
small fraction of that time, λt (see Figure 1).

If the scheduled maintenance is peri-
odic and on a predictable schedule, then
following t hours there is a scheduled out-
age of λt so that the fraction of time that
the system is not in maintenance is:

t / (t + λλt) = 1 / (1 + λλ) (3)

Since the denominator in A2 does not
include the time in preventive mainte-
nance, an adjustment to formula (1) is
needed whenever preventive maintenance
is part of the operational routine. To
include this time, the denominator needs
to be increased by a factor of 1+ λ to
accurately reflect the smaller actual avail-
ability expected. Stated differently, the
denominator in A2 needs to be modified
to accurately represent all time, including
operational (MTBF), in repair (MTTR), or
in maintenance λ (MTBF + MTTR). The
revised availability model in cases of
scheduled downtime is:

MTBF
A3 =

(4)

(1 + λλ)(MTBF + MTTR)

This model, like the model A2, assumes
independence between the model vari-
ables. In reality there may be some rela-
tionship between the variables MTBF,
MTTR, and λ.

Availability Engineering
A complex system is composed of many
interrelated components; failure of one
component may not impact availability if
the system is designed to withstand such a

Availability, Reliability, and Survivability:
An Introduction and Some Contractual Implications

This article is directed toward information technology professionals that enter into contractual agreements requiring service-
level agreements (SLAs) that specify availability, reliability, or survivability objectives. Its purpose is to show a relationship
between cost, performance, and SLA levels established by the customer.

Dr. Thomas Ward Morgan
CACI Federal

Dr. Jack Murphy
DeXIsive Inc.

Availability, Reliability, and Survivability:An Introduction and Some Contractual Implications

March 2006 www.stsc.hill.af.mil 27

failure, while failure of another compo-
nent may cause system downtime and
hence degradation in availability. Conse-
quently, system design can be used to
achieve high availability despite unreliable
components.

For example, if Entity1 has compo-
nent availability 0.9 and Entity2 has com-
ponent availability 0.6, then the system
availability depends on how the entities
are arranged in the system. As shown in
Figure 2, the availability of System1 is
dependent on the availability of both
Entity1 and Entity2.

In Figure 3, the system is unavailable
only when both components fail. To com-
pute the overall availability of complex
systems involving both serially dependent
and parallel components, a simple recur-
sive use of the formulas in Figures 2 and
3 can be employed.

Thus far, the engineer has two tools to
achieve availability requirements specified
in SLAs: a selection of reliable compo-
nents and system design techniques. With
these two tools, the system designer can
achieve almost any desired availability,
albeit at added cost and complexity.

The system designer must consider a
third component of availability: opera-
tional practices. Reliability benchmarks
have shown that 70 percent of reliability
issues are operations induced versus the
traditional electromechanical failures. In
another study, more than 50 percent of
Internet site outage events were a direct
result of operational failures, and almost
60 percent of public-switched telephone
network outages were caused by such fail-
ures [1]. Finally, Cisco asserts that 80 per-
cent of non-availability occurs because of
failures in operational practices [2]. One
thing is clear: Only a change in operational
practices can improve availability after the
system components have been purchased
and the system is implemented as
designed.

In many cases, operational practices
are within control of the service provider
while product choice and system design
are outside of its control. Conversely, a
system designer often has little or no con-
trol over the operational practices.
Consequently, if a project specifies a cer-
tain availability requirement, say 99.9 per-
cent (3-nines), the system architect must
design the system with more than 3-nines
of availability to leave enough head space
for operational errors.

To develop a model for overall avail-
ability, it is useful to consider failure rate
instead of MTBF. Let α denote the failure
rate due to component failure only. Then
α = 1/MTBF. Also, let τ denote the total

failure rate, including component failure
as well as failure due to operational errors.
Then 1/τ is the mean time between failure
when both component failure and failures
due to operational errors are considered
(MTBFTot).

If β denotes the fraction of outages
that are operations related, then (1 - β) τ
is the fraction of outages that are due to
component failure. Thus:

(1 – ββ) ττ = αα
So ττ = αα / (1 – ββ) and

MTBFTot = (1 – ββ) / αα (5)

The revised model becomes:

MTBFTot

A4 =

(6)
(1 + λλ)(MTBFTot + MTTR)

where,

1 – ββ
MTBFTot =

αα

When an SLA specifies an availability
of 99.9 percent, the buyer typically
assumes the service provider considers all
forms of outage, including component
failure, scheduled maintenance outage,
and outages due to operational error. So
the buyer has in mind a model like that
defined by A4. But the designer typically
has in mind a model like A2 because the
design engineer seldom has control over
the maintenance outages or operationally
induced outages, but does have control
over product selection and system design.
Thus, the buyer is frequently disappointed
by insufficient availability and the service
provider is frustrated because the SLAs
are difficult or impossible to achieve at the
contract price.

If the system design engineer is given
insight into λ, the maintenance overhead
factor, and β, then A2 can be accurately
determined so that A4 is within the SLA.
For example, if A4 = 99 percent, it may be
necessary for the design engineer to build
a system with A2 = 99.999 percent avail-
ability to leave sufficient room for mainte-
nance outages and outages due to opera-
tional errors.

Given an overall availability require-
ment (A4) and information about λ and β,
the design availability A2 can be computed
from formula (7). Note that high mainte-
nance ratios become a limiting factor in
being able to engineer adequate availability.

(1 + λλ))A4

A2 =

(7)
1 + ββ ((1 + λλ) A4 – 1)

For 3-nines of overall availability it is

necessary to engineer a system for over 6-
nines of availability (less than 20 sec-
onds/year downtime due to component
failure) even if only 50 percent of outages
are the result of operational errors when
the maintenance overhead is 0.1 percent.
Engineering systems for 6-nines of avail-
ability may have a dramatic impact on sys-
tem cost and complexity. It may be better
to develop operational practices that min-
imize repair time and scheduled mainte-
nance time.

Reliability
What Is Reliability?
There is an important distinction between
the notion of availability presented in the
preceding section and reliability. Availa-
bility is the expected fraction of time that
a system is operational. Reliability is the
probability that a system will be available
(i.e., will not fail) over some period of
time, t. It does not measure or model
downtime. Instead reliability only models
the time until failure occurs without con-
cern for the time to repair or return to
service.

Reliability Engineering
To model reliability, it is necessary to
know something about the failure stochas-
tic process, that is, the probability of fail-
ure before time, t. The Poisson Process,
based upon the exponential probability
distribution, is usually a good model. For

t

(operational time) (maintenance time)

t + λt

(total cycle time)

λt

Figure 1: Preventive Maintenance Cycle

System1

A B

Entity1

90%

Entity2

60%

Availability: 90% x 60% = 54%

S stem2

A B

Entity 1

90%

Entity 2

60%

Availability: 1 - (1 – 0.9)(1 – 0.6) = 96%

Figure 1: Preventative Maintenance Cycle

t

(operational time) (maintenance time)

t + λt

(total cycle time)

λt

Figure 1: Preventive Maintenance Cycle

System1

A B

Entity1

90%

Entity2

60%

Availability: 90% x 60% = 54%

System2

A B

Entity 1

90%

Entity 2

60%

Availability: 1 - (1 – 0.9)(1 – 0.6) = 96%

Figure 2: Availability With Serial Components

t

(operational time) (maintenance time)

t + λt

(total cycle time)

λt

Figure 1: Preventive Maintenance Cycle

System1

A B

Entity1

90%

Entity2

60%

Availability: 90% x 60% = 54%

System2

A B

Entity 1

90%

Entity 2

60%

Availability: 1 - (1 – 0.9)(1 – 0.6) = 96%

Figure 3: Availability With Parallel Components

Software Engineering Technology

28 CROSSTALK The Journal of Defense Software Engineering March 2006

this process, it is only necessary to esti-
mate the mean of the exponential distrib-
ution to predict reliability over any given
time interval. Figure 4 depicts the expo-
nential distribution function and the relat-
ed density function. As shown, the proba-
bility of a failure approaches 1 as the peri-
od of time increases.

If F(t) and f(t) are the exponential dis-
tribution and density functions respective-
ly, then the reliability function R(t) = 1 –
F(t). So that,

R(t) = 1- ∫∫ ∞∞
t ƒƒ(t) = ∫∫ t

0 ƒƒ(t) = ∫∫ t

0

1–
θ = e

-t/θ (8)

where,

θ = MTBF

The mean of this distribution is θ, the
MTBF. It can be measured directly from
empirical observations over some histori-
cal period of observation or estimated
using the availability models presented
earlier.

Table 1 shows the reliability for various
values of θ and t. Note that when t =
MTBF, R(t) = 36.79 percent. That is, what-
ever the MTBF, the reliability over that
same time period is always 36.79 percent.

Network components such as
Ethernet switches typically have an MTBF
of approximately 50,000 hours (about 70
months). Thus the annual reliability of a
single component is about 85 percent (use
t=12 and θ=70 in the formula above or
interpolate using Table 2). If that compo-
nent is a single point of failure from the
perspective of an end workstation, then
based on component failure alone the

probability of outage for such worksta-
tions is at least 15 percent. When opera-
tional errors are considered, it is MTBFTot,
not MTBF that determines reliability, so
the probability of an unplanned outage
within a year’s time increases accordingly.

The preceding assumes that the expo-
nential density function accurately models
system behavior. For systems with period-
ic scheduled downtime, this assumption is
invalid. At a discrete point in time, there is
a certainty that such a system will be
unavailable: R(t) = e-t/θ for any t < t0, where
t0 is the point in time of the next sched-
uled maintenance, and R(t) = 0 for t ≥ t0.

Survivability
What Is Survivability?
Survivability of IT systems is a significant
concern, particularly among critical infra-
structure providers. Availability and relia-
bility analysis assume that failures are
somewhat random and the engineer’s job
is to design a system that is robust in the
face of random failure. There is thus an
implicit assumption that system failure is
largely preventable.

Survivability analysis implicitly makes
the conservative assumption that failure
will occur and that the outcome of the
failure could negatively impact a large seg-
ment of the subscribers to the IT infra-
structure. Such failures could be the result
of deliberate, malicious attacks against the
infrastructure by an adversary, or they
could be the result of natural phenome-
non such as catastrophic weather events.
Regardless of the cause, survivability
analysis assumes that such events can and
will occur and the impact to the IT infra-
structure and those who depend on it will
be significant.

Survivability has been defined as “the
capability of a system to fulfill its mission
in a timely manner, in the presence of
attacks, failures, or accidents” [3]. Surviv-
ability analysis is influenced by several
important principles:
• Containment. Systems should be

designed to minimize mission impact
by containing the failure geographical-
ly or logically.

• Reconstitution. System designers
should consider the time, effort, and

skills required to restore essential mis-
sion-critical IT infrastructure after a
catastrophic event.

• Diversity. Systems that are based on
multiple technologies, vendors, loca-
tions, or modes of operation could
provide a degree of immunity to
attacks, especially those targeted at
only one aspect of the system.

• Continuity. It is the business of mis-
sion-critical functions that they must
continue in the event of a catastrophic
event, not any specific aspect of the IT
infrastructure.

If critical functions are composed of both
IT infrastructure (network) and function-
specific technology components (servers),
then both must be designed to be surviv-
able. An enterprise IT infrastructure can be
designed to be survivable, but unless the
function-specific technologies are also sur-
vivable, irrecoverable failure could result.

Measuring Survivability
From the designers’ and the buyers’ per-
spectives, comparing various designs
based upon their survivability is critical for
making cost and benefit tradeoffs. Next
we discuss several types of analysis that
can be performed on a network design
that can provide a more quantitative
assessment of survivability.

Residual measures for an IT infra-
structure are the same measures used to
describe the infrastructure before a cata-
strophic event but are applied to the
expected state of the infrastructure after
the effects of the event are taken into con-
sideration. Here we discuss four residual
measures that are usually important:
• Residual Single Points of Failure.

In comparing two candidate infra-
structure designs, the design with
fewer single points of failure is gener-
ally considered more robust than the
alternative. When examining the sur-
vivability of an infrastructure with
respect to a particular catastrophic
event, the infrastructure with the fewer
residual single points of failure is intu-
itively more survivable. This measure
is a simple count.

• Residual Availability. The same avail-
ability analysis done on an undamaged
infrastructure can be applied to an infra-
structure after it has been damaged by a
catastrophic event. Generally, the higher
the residual availability of an infrastruc-
ture the more survivable it is with
respect to the event being analyzed.

• Residual Performance. A residual
infrastructure that has no single point
of failure and has high residual avail-
ability may not be usable from the per-

H
ig

h Small MTBF,

Small MTTR

Large MTBF,

Small MTTR

A
v

a
il

a
b

il
it

y

L
o

w Small MTBF,

Large MTTR

Large MTBF,

Large MTTR

Low High

Reliability

Table 1: Relationship Between Reliability and Availability

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

t

Exponential density function with mean 1.0

Probability of failure before time t

Figure 2: Exponential Density and Distribution Functions With MTBF = 1.0

t (months)
R(t)

1 2 4 8 12 24 48 96

3 71.65% 51.34% 26.36% 6.95% 1.83% 0.03% 0.00% 0.00%

6 84.65% 71.65% 51.34% 26.36% 13.53% 1.83% 0.03% 0.00%

12 92.00% 84.65% 71.65% 51.34% 36.79% 13.53% 1.83% 0.03%

24 95.92% 92.00% 84.65% 71.65% 60.65% 36.79% 13.53% 1.83%

48 97.94% 95.92% 92.00% 84.65% 77.88% 60.65% 36.79% 13.53%

MTBF

(months)

96 98.96% 97.94% 95.92% 92.00% 88.25% 77.88% 60.65% 36.79%

Figure 4: Exponential Density and
Distribution Functions With MTBF = 1.0

H
ig

h Small MTBF,

Small MTTR

Large MTBF,

Small MTTR

A
v

a
il

a
b

il
it

y

L
o

w Small MTBF,

Large MTTR

Large MTBF,

Large MTTR

Low High

Reliability

Table 1: Relationship Between Reliability and Availability

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

t

Exponential density function with mean 1.0

Probability of failure before time t

Figure 2: Exponential Density and Distribution Functions With MTBF = 1.0

t (months)
R(t)

1 2 4 8 12 24 48 96

3 71.65% 51.34% 26.36% 6.95% 1.83% 0.03% 0.00% 0.00%

6 84.65% 71.65% 51.34% 26.36% 13.53% 1.83% 0.03% 0.00%

12 92.00% 84.65% 71.65% 51.34% 36.79% 13.53% 1.83% 0.03%

24 95.92% 92.00% 84.65% 71.65% 60.65% 36.79% 13.53% 1.83%

48 97.94% 95.92% 92.00% 84.65% 77.88% 60.65% 36.79% 13.53%

MTBF

(months)

96 98.96% 97.94% 95.92% 92.00% 88.25% 77.88% 60.65% 36.79%

Table 1: Reliability Over t Months For MTBF Ranging From 3 to 96 Months

Availability, Reliability, and Survivability:An Introduction and Some Contractual Implications

March 2006 www.stsc.hill.af.mil 29

spective of the surviving subscribers
(users). Consequently, the perfor-
mance received by the surviving user
community needs to be analyzed. The
analysis must take into consideration
any increase or decrease in infrastruc-
ture activity resulting from the organi-
zational response to the event being
studied. As an example, the perfor-
mance of file transfers across an enter-
prise may average 100 megabits per
second (Mbps) under normal circum-
stances but a catastrophic failure may
reduce the performance to 10 Mbps
even if there is no loss of service (i.e.,
availability).

• Reconstitution Time. Once a cata-
strophic event has taken place, the
time required to resume mission-criti-
cal activities is one of the most impor-
tant residual measures for describing
an IT infrastructure’s survivability.
Calculations of reconstitution time
should take into consideration both
emergency recovery plans and impair-
ment of recovery capabilities caused
by the event.

Comparing Architectures
In evaluating alternative architectures, some
composite measures across a set of poten-
tial events are often useful. In this section,
we suggest two methods to compare the
survivability of alternative architectures.

Develop a Conical Event Set
A conical set of events is a set that
includes all the important types of cata-
strophic events that the IT infrastructure
should be designed to survive. For exam-
ple, if fires, floods, viruses, and power
outages are the types of events that must
be anticipated in the IT infrastructure
design, then the conical set of events
includes at least one example of each
type. Ideally, the conical set of events
includes the worst case example of each
event type.

Compare the Survivability of
Architectures
After calculating the residual metrics for
each of the events in the conical set and
alternative architectures, it may be desir-
able to make an objective comparison of
the survivabilities. We discuss two concep-
tual ways of making such comparisons.
• Multiple Criteria Methods. Within

the specialty area of multi-criteria opti-
mization, the concept of best alterna-
tives has been formalized. This con-
cept simply states that if one alterna-
tive has scores that are greater or equal
to the corresponding scores of all

other alternatives and has a unique
best score for at least one criterion, it
is clearly the best alternative.
Consequently, if one of the architec-
tures being evaluated has higher resid-
ual availability for all events, lower
reconstitution time for all events, and
fewer single points of failures for all
events, it is clearly the best architecture
among those being compared.

• Weighting Methods. In situations
where there are many criteria that can
be weighted by some subjective means
and no clear best alternative based
upon multiple criteria methods exists,
a reasonable approach to selecting the
most survivable alternative is to create
a survivability index. The index would
be a simple, weighted sum of the crite-
ria cij values for each catastrophic event
multiplied by their respective weights,
wij. An index value is computed for
each alternative and the alternative
with the highest (or lowest) index is
selected as the best alternative. The
formula is:

Survivability Index = ∑i∑j wi,j ci,j (9)

In (9), the i index ranges over the set of
catastrophic events, and the j index ranges
over the survivability criteria.

Summary
Availability and reliability are well-estab-
lished disciplines upon which SLAs are
frequently established. However, surviv-
ability is an increasingly important factor
in the design of complex systems. More
effort is needed for survivability to
achieve the same rigor as enjoyed by avail-
ability and reliability.u

References
1. Patterson, D., et al. “Recovery

Oriented Computing: Motivation,
Definition, Techniques, and Case
Studies.” Berkeley, CA: University of
California Berkeley, Mar. 2002.

2. Cisco Systems. “Service Level Man-
agement Best Practices White Paper.”
San Jose, CA: Cisco Systems, July
2003.

3. Ellison, R.J., et al. “Survivable Net-
work Systems, an Emerging Disci-
pline.” Technical Report CMU/SEI-
97-TR-013, 1997.

About the Authors

Jack Murphy, Ph.D., is
president and chief exec-
utive officer of DeXIsive
Inc., an information
technology system inte-
grator focusing on infor-

mation assurance, network solutions,
and enterprise infrastructure applica-
tions. Prior to this, Murphy was the chief
technical officer for EDS U.S.
Government Solutions Group. He is an
EDS Fellow Emeritus and remains
actively involved with EDS thought
leaders. Murphy retired as a lieutenant
colonel from the Air Force where he
spent much of his career on the faculty
of the Air Force Academy teaching
math, operations research, and comput-
er science. He has a doctorate in com-
puter science from the University of
Maryland.

DeXIsive, Inc.
4031 University DR STE 200
Fairfax, VA 22030
Phone: (703) 934-2030
Cell: (703) 867-1246
E-mail: jack.murphy@dexisive.com

Thomas Ward Morgan,
Ph.D., is a chief simula-
tion scientist at CACI
International, and leads
the World Wide Engi-
neering Support Group

Modeling and Simulation team. He has
been involved in networking and soft-
ware development since 1970. Morgan
served in the Army Medical Service
Corps and worked on the Automated
Military Outpatient System and Next
Generation Military Hospital projects.
He has also worked at AT&T Bell
Laboratories participating in the design
of internal corporate networks to sup-
port AT&T’s customer premises equip-
ment operations. He was active in the
Institute for Operations Research and
the Management Sciences and has pub-
lished over 60 technical papers. He has a
Master of Science and a doctorate in
electrical engineering.

CACI Federal
14111 Park Meadow DR STE 200
Chantilly, VA 20151
Phone: (703) 802-8528
E-mail: wmorgan@caci.com

30 CROSSTALK The Journal of Defense Software Engineering March 2006

Departments

BACKTALK

March 2006 www.stsc.hill.af.mil 31

I’d like to start off this column with a story about a friend of
mine. We’ll call my friend “Jeff.” The story involves his daugh-

ter, who we will call “Jill.” It seems that Jill, who is an accom-
plished swimmer, once had a contest with a friend of hers to see
who could hold her breath the longest. Jill easily won the contest
– a fact that had to be verified by her friend – as Jill had the
endurance and willpower to hold her breath so long that she
passed out. I also hear that ambulances were involved afterwards.

You know, as a father, I would be proud to have a daughter
like Jill1. I know Jeff is! I imagine anybody with that kind of
willpower is rather immune to peer pressure, and will also ulti-
mately succeed in whatever she sets her mind to. She definitely is
tenacious – which is a synonym for stubborn. Obviously, she has
the makings of a fine engineer.

I have long thought that those children who have the poten-
tial to be truly gifted engineers could be identified easily in
playschool. All it requires is a sandbox and a few toys. Insert chil-
dren. There will be a few children who will happily play with oth-
ers, enjoying the sand and the toys. These are not future engi-
neers. Over in the corner of the sandbox, however, there will be
a child happily playing alone, by himself or herself. Whenever any
of the other children come too close, this child will throw sand
at the intruders, and may go as far as knocking intruders on the
heads with the sand-building instruments, all the while clutching
at his/her toys shouting, “Mine!” This is a potential engineer!

Let’s face it – for developers, a good chunk of our day is
spent sitting alone in cubicles, ignoring the hustle and bustle sur-
rounding us. We occasionally put on earphones and listen to
music, or just learn to tune out surrounding noise. And there we
sit – oblivious to the outside world, creating “stuff.” The prob-
lem, as any good software tester will tell you, is that putting your
stuff together with my stuff will uncover interface errors. And
again, as any good tester will tell you, interface errors are numer-
ous and often difficult to fix. From my point of view, the prob-
lem is your code. You, of course, might have a slightly differing
opinion. Many testing authorities say that up to 75 percent of all
errors stem from interface problems.

It’s not all our fault; we’re trained to operate in isolation, start-
ing in college. We are encouraged to come up with individual,
innovative solutions to problems. The problem is that your indi-
vidual, innovative solution might not make a lot of sense to me,
and I have to write the software that interacts with yours. To
make my software interact with your software, we need to com-
municate before and during the software creation. This can be
done via the tried-and-untrue method of meeting after meeting
after meeting – but this method hardly ever works. What I need
is a way to encourage good teamwork and cooperation, without
spending 50 percent to 70 percent of my day in meetings. Enter
Personal Software ProcessSM (PSPSM) and Team Software
ProcessSM (TSPSM).

Granted, I am a PSP/TSP zealot. PSP encourages good indi-
vidual programming practices, and TSP creates an environment
that permits motivated individuals to work as an efficient team. I
have been teaching PSP/TSP since 1998 – and it’s one of the few
tools that I teach to developers that (almost) always prove bene-
ficial. Why almost? Because some developers just don’t want to
interact as a team. They don’t have the interpersonal skills to play

well in the sandbox. Part of this is because of insecurity
(“Everybody else is so much better than me – and I don’t want
anybody knowing this.”). Part is because they never learned good
team-building skills. (Note that spending a full day at an off-site
team-building exercise where you learn to fall backwards into
your teammates arms is not really that useful). However, I have
found that the majority of developers I have worked with do
have the skills and motivation to become part of an integrated
team.

PSP/TSP works because teams are inherently more effective
than individuals. The so-called synergistic effect really works –
where the combined action of two individuals is more than the
sum of their individual efforts. Developing software through
teamwork is nothing new, but what makes PSP/TSP effective is
that it includes quantifiable metrics that allow developers, as a
group, to accurately plan and track their progress. These team
metrics make the team effective, because, as Lord Kelvin said
back on May 3, 1883, in a lecture to the Institution of Civil
Engineers:

When you can measure what you are speaking about
and express it in numbers, you know something about
it; but when you cannot measure, when you cannot
express it in numbers, your knowledge is of a meager
and unsatisfactory kind; it may be the beginning of
knowledge, but you have scarcely, in your thoughts,
advanced to the stage of a science. [1]

My personal translation of this – which I have repeated to
every PSP class I have taught – is, “If you can’t count it, you can’t
account for it.” But Lord Kelvin only mentions the need for
metrics, not teamwork. If only I could find a reputable source to
support teamwork:

Two are better than one, because they have a good
return for their work: If one falls down, his friend can
help him up. But pity the man who falls and has no
one to help him up! ... Though one may be overpow-
ered, two can defend themselves. [2]

— David A. Cook, Ph.D.
The AEgis Technologies Group, Inc.

<dcook@aegistg.com>

References
1. Kelvin, Lord <http://www.cromwell-intl.com/3d/index.hml>.
2. The Bible. Ecclesiastes 4: 9-10, 12 (NIV)2.

Notes
1. In case any of my daughters read this column – yes, you are

“tenacious,” also. And I am proud of you.
2. The biblical scholars among you might note that I skipped

verse 11: “Also, if two lie down together, they will keep warm.
But how can one keep warm alone?” This is not the kind of
teamwork that I either encourage or condone among my co-
workers!

Why Isn’t There an “I” in Team?

CrossTalk / 309 SMXG/MXDB
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

CrossTalk is
co-sponsored by the

following organizations:

	Front Cover
	Table of Contents
	From the Sponsor
	PSP/TSP
	Using TSP With a Multi-DisciplinedProject Management System
	Factors Affecting Personal Software Quality
	Designing in UML With theTeam Software Process
	Maturing the PSP:Developing a Body of Knowledge and Professional ertification for PSP-Trained Software Developers

	Software Engineering Technology
	Understanding the Logic of System Testing
	Availability, Reliability, and Survivability: An Introduction and Some Contractual Implications

	Coming Events
	Web Sites
	Call for Articles
	Letter to the Editor
	SSTC Conference
	BackTalk
	Back Cover

